100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Mathematical Methods in the Physical Sciences, Boas - Downloadable Solutions Manual (Revised)

Beoordeling
-
Verkocht
-
Pagina's
71
Cijfer
A+
Geüpload op
17-07-2022
Geschreven in
2021/2022

Description: Solutions Manual for Mathematical Methods in the Physical Sciences, Boas, 3e is all you need if you are in need for a manual that solves all the exercises and problems within your textbook. Answers have been verified by highly experienced instructors who teaches courses and author textbooks. If you need a study guide that aids you in your homework, then the solutions manual for Mathematical Methods in the Physical Sciences, Boas, 3e is the one to go for you. Disclaimer: We take copyright seriously. While we do our best to adhere to all IP laws mistakes sometimes happen. Therefore, if you believe the document contains infringed material, please get in touch with us and provide your electronic signature. and upon verification the doc will be deleted.

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
17 juli 2022
Aantal pagina's
71
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Chapter 1


1.1 (2/3)10 = 0.0173 yd; 6(2/3)10 = 0.104 yd (compared to a total of 5 yd)
1.3 5/9 1.4 9/11 1.5 7/12
1.6 11/18 1.7 5/27 1.8 25/36
1.9 6/7 1.10 15/26 1.11 19/28
1.13 $1646.99 1.15 Blank area = 1
1.16 At x = 1: 1/(1 + r); at x = 0: r/(1 + r); maximum escape at x = 0 is 1/2.

2.1 1 2.2 1/2 2.3 0
2.4 ∞ 2.5 0 2.6 ∞
2.7 e2 2.8 0 2.9 1

4.1 an = 1/2n → 0; Sn = 1 − 1/2n → 1; Rn = 1/2n → 0
4.2 an = 1/5n−1 → 0; Sn = (5/4)(1 − 1/5n ) → 5/4; Rn = 1/(4 · 5n−1 ) → 0
4.3 an = (−1/2)n−1 → 0; Sn = (2/3)[1 − (−1/2)n ] → 2/3; Rn = (2/3)(−1/2)n → 0
4.4 an = 1/3n → 0; Sn = (1/2)(1 − 1/3n ) → 1/2; Rn = 1/(2 · 3n ) → 0
4.5 an = (3/4)n−1 → 0; Sn = 4[1 − (3/4)n ] → 4; Rn = 4(3/4)n → 0
1 1 1
4.6 an = → 0; Sn = 1 − → 1; Rn = →0
n(n + 1) n+1 n+1
(−1)n+1 (−1)n
 
1 1
4.7 an = (−1)n+1 + → 0 ; Sn = 1 + → 1; Rn = →0
n n+1 n+1 n+1

5.1 D 5.2 Test further 5.3 Test further
5.4 D 5.5 D 5.6 Test further
5.7 Test further 5.8 Test further
5.9 D 5.10 D

6.5 (a) D 6.5 (b) D
R∞
Note: In the following answers, I= an dn; ρ = test ratio.
6.7 D, I = ∞ 6.8 D, I = ∞ 6.9 C, I = 0
6.10 C, I = π/6 6.11 C, I = 0 6.12 C, I = 0
6.13 D, I = ∞ 6.14 D, I = ∞ 6.18 D, ρ = 2
6.19 C, ρ = 3/4 6.20 C, ρ = 0 6.21 D, ρ = 5/4
6.22 C, ρ = 0 6.23 D, ρ = ∞ 6.24 D, ρ = 9/8
6.25 C, ρ = 0 6.26 C, ρ = (e/3)3 6.27 D, ρ =P100
6.28 C, ρ =P 4/27 6.29 D, ρ =P2 6.31 D, cf. P n−1
6.32 D, cf. n−1 6.33 C, cf. 2−n 6.34 C, cf. n−2
P −2 P −1/2
6.35 C, cf. n 6.36 D, cf. n




1

,Chapter 1 2


7.1 C 7.2 D 7.3 C 7.4 C
7.5 C 7.6 D 7.7 C 7.8 C
P −1
9.1 D, cf. n 9.2 D, an 6→ 0 P −1
9.3 C, I =P0 9.4 D, I = ∞, or cf. n
9.5 C, cf. n−2 9.6 C, ρ = 1/4
9.7 D, ρ = 4/3 9.8 C, ρ = 1/5
9.9 D, ρ = e 9.10 D, an 6→
P 0 −2
D, I = ∞, or cf.P n−1
P
9.11 9.12 C, cf. n
9.13 C, I = 0, or cf. n−2 9.14 C, alt.Pser.
9.15 D, ρ = ∞, an 6→ 0 9.16 C, cf. n−2
9.17 C, ρ = 1/27 9.18 C, alt. ser.
9.19 C 9.20 C
9.21 C, ρ = 1/2
9.22 (a) C (b) D (c) k > e

10.1 |x| < √ 1 10.2 |x| < 3/2 10.3 |x| ≤ 1
10.4 |x| ≤ 2 10.5 All x 10.6 All x
10.7 −1 ≤ x < 1 10.8 −1 < x ≤ 1 10.9 |x| < 1
10.10 |x| ≤ 1 10.11 −5 ≤ x < 5 10.12 |x| < 1/2
10.13 −1 < x ≤ 1 10.14 |x| < 3 10.15 −1 < x < 5
10.16 −1 < x < 3 10.17 −2 < x ≤ 0 10.18 −3/4 ≤ x ≤ −1/4
10.19 |x| < 3 10.20 All x 10.21 0 ≤ x √≤1
10.22 No x 10.23 x > 2 or x < −4 10.24 |x| < 5/2
10.25 nπ − π/6 < x < nπ + π/6

(−1)n (2n − 1)!!
   
−1/2 −1/2
13.4 = 1; =
0 n (2n)!!
Answers to part (b), Problems 5 to 19:
∞ n+2 ∞  
X x X 1/2 n+1
13.5 − 13.6 x (see Example 2)
1
n 0
n
∞ ∞ 
(−1)n x2n

X X −1/2
13.7 13.8 (−x2 )n (see Problem 13.4)
0
(2n + 1)! 0
n
∞ ∞
X X (−1)n x4n+2
13.9 1 + 2 xn 13.10
1 0
(2n + 1)!
∞ n n ∞
X (−1) x X (−1)n x4n+1
13.11 13.12
0
(2n + 1)! 0
(2n)!(4n + 1)
∞ n 2n+1 ∞
X (−1) x X x2n+1
13.13 13.14
0
n!(2n + 1) 0
2n + 1

x2n+1

X −1/2 
13.15 (−1)n
0
n 2n + 1
∞ 2n ∞
X x X xn
13.16 13.17 2
0
(2n)! n
oddn

X (−1)n x2n+1 ∞
X −1/2 x2n+1

13.18 13.19
0
(2n + 1)(2n + 1)! 0
n 2n + 1
2 3 5 6
13.20 x + x + x /3 − x /30 − x /90 · · ·
13.21 x2 + 2x4 /3 + 17x6 /45 · · ·
13.22 1 + 2x + 5x2 /2 + 8x3 /3 + 65x4 /24 · · ·
13.23 1 − x + x3 − x4 + x6 · · ·

,Chapter 1 3


13.24 1 + x2 /2! + 5x4 /4! + 61x6 /6! · · ·
13.25 1 − x + x2 /3 − x4 /45 · · ·
13.26 1 + x2 /4 + 7x4 /96 + 139x6 /5760 · · ·
13.27 1 + x + x2 /2 − x4 /8 − x5 /15 · · ·
13.28 x − x2 /2 + x3 /6 − x5 /12 · · ·
13.29 1 + x/2 − 3x2 /8 + 17x3 /48 · · ·
13.30 1 − x + x2 /2 − x3 /2 + 3x4 /8 − 3x5 /8 · · ·
13.31 1 − x2 /2 − x3 /2 − x4 /4 − x5 /24 · · ·
13.32 x + x2 /2 − x3 /6 − x4 /12 · · ·
13.33 1 + x3 /6 + x4 /6 + 19x5 /120 + 19x6 /120 · · ·
13.34 x − x2 + x3 − 13x4 /12 + 5x5 /4 · · ·
13.35 1 + x2 /3! + 7x4 /(3 · 5!) + 31x6 /(3 · 7!) · · ·
13.36 u2 /2 + u4 /12 + u6 /20 · · ·
13.37 −(x2 /2 + x4 /12 + x6 /45 · · · )
13.38 e(1 − x2 /2 + x4 /6 · · · )
4
13.39 1 − (x − π/2)2 /2! + (x − π/2) /4! · · ·
3
13.40 1 − (x − 1) + (x − 1)2 − (x − 1) · · ·
13.41 e [1 + (x − 3) + (x − 3) /2! + (x − 3)3 /3! · · · ]
3 2
2
13.42 −1 + (x − π) /2! − (x − π)4 /4! · · ·
13.43 −[(x − π/2) + (x − π/2)3 /3 + 2(x − π/2)5 /15 · · · ]
13.44 5 + (x − 25)/10 − (x − 25)2 /103 + (x − 25)3 /(5 · 104 ) · · ·

14.6 Error < (1/2)(0.1)2 ÷ (1 − 0.1) < 0.0056
14.7 Error < (3/8)(1/4)2 ÷ (1 − 14 ) = 1/32
14.8 For x < 0, error < (1/64)(1/2)4 < 0.001
For x > 0, error < 0.001 ÷ (1 − 12 ) = 0.002
1
14.9 Term n + 1 is an+1 = (n+1)(n+2) , so Rn = (n + 2)an+1 .
14.10 S4 = 0.3052, error < 0.0021 (cf. S = 1 − ln 2 = 0.307)

15.1 −x4 /24 − x5 /30 · · · ' −3.376 × 10−16
15.2 x8 /3 − 14x12 /45 · · · ' 1.433 × 10−16
15.3 x5 /15 − 2x7 /45 · · · ' 6.667 × 10−17
15.4 x3 /3 + 5x4 /6 · · · ' 1.430 × 10−11
15.5 0 15.6 12 15.7 10!
15.8 1/2 15.9 −1/6 15.10 −1
15.11 4 15.12 1/3 15.13 −1
15.14 t − t3 /3, error < 10−6 15.15 23 t3/2 − 52 t5/2 , error < 17 10−7
15.16 e2 − 1 15.17 √cos π2 = 0
15.18 ln 2 15.19 2
15.20 (a) 1/8 (b) 5e (c) 9/4
15.21 (a) 0.397117 (b) 0.937548 (c) 1.291286
15.22 (a) π 4 /90 (b) 1.202057 (c) 2.612375
15.23 (a) 1/2 (b) 1/6 (c) 1/3 (d) −1/2
15.24 (a) −π (b) 0 (c) −1
(d) 0 (e) 0 (f) 0
15.27 (a) 1 − vc = 1.3 × 10−5 , or v = 0.999987c
(b) 1 − vc = 5.2 × 10−7
(c) 1 − vc = 2.1 × 10−10
(d) 1 − vc = 1.3 × 10−11
15.28 mc2 + 21 mv 2
15.29 (a) F/W = θ + θ3 /3 · · ·
(b) F/W = x/l + x3 /(2l3 ) + 3x5 /(8l5 ) · · ·

, Chapter 1 4


15.30 (a) T = F (5/x + x/40 − x3 /16000 · · · )
(b) T = 21 (F/θ)(1 + θ2 /6 + 7θ4 /360 · · · )
15.31 (a) finite (b) infinite

16.1 (c) overhang: 2 3 10 100
books needed: 32 228 2.7 × 108 4 × 1086
P −3/2
16.4 C, ρ = 0 16.5 D, an 6→ P 0 −1 16.6 C, cf. n
16.7 D, I = ∞ 16.8 D, cf. n 16.9 −1 ≤ x < 1
16.10 |x| < 4 16.11 |x| ≤ 1 16.12 |x| < 5
16.13 −5 < x ≤ 1
16.14 1 − x2 /2 + x3 /2 − 5x4 /12 · · ·
16.15 −x2 /6 − x4 /180 − x6 /2835 · · ·
16.16 1 − x/2 + 3x2 /8 − 11x3 /48 + 19x4 /128 · · ·
16.17 1 + x2 /2 + x4 /4 + 7x6 /48 · · ·
16.18 x − x3 /3 + x5 /5 − x7 /7 · · ·
16.19 −(x − π) + (x − π)3 /3! − (x − π)5 /5! · · ·
16.20 2 + (x − 8)/12 − (x − 8)2 /(25 · 32 ) + 5(x − 8)3 /(28 · 34 ) · · ·
16.21 e[1 + (x − 1) + (x − 1)2 /2! + (x − 1)3 /3! · · · ]
16.22 arc tan 1 = π/4 16.23 1 − (sinπ)/π = 1
16.24 eln 3 − 1 = 2 16.25 −2
16.26 −1/3 16.27 2/3
16.28 1 16.29 6!
16.30 (b) For N = 130, 10.5821 < ζ(1.1) < 10.5868
16.31 (a) 10430 terms. For N = 200, 100.5755 < ζ(1.01) < 100.5803
16.31 (b) 2.66 × 1086 terms. For N = 15, 1.6905 < S < 1.6952
200 86
16.31 (c) ee = 103.1382×10 terms. For N = 40, 38.4048 < S < 38.4088
€35,68
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tb4u City University New York
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
973
Lid sinds
3 jaar
Aantal volgers
776
Documenten
2374
Laatst verkocht
5 dagen geleden

4,0

158 beoordelingen

5
87
4
27
3
19
2
6
1
19

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen