100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting Linear Algebra (X_400649)

Beoordeling
-
Verkocht
10
Pagina's
28
Geüpload op
12-07-2022
Geschreven in
2020/2021

Samenvatting van het vak Linear Algebra als gegeven aan de Vrije Universiteit Amsterdam.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 juli 2022
Aantal pagina's
28
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

I. 1
Systems of linear equations


A linear equation in the variables Xi .
.
. .
.
Xn is an equation that can be written

in the form dik t 92×2 t . . .
tanxn = b.

A
system of linear equations is a collection of one or more linear

linear equations involving the same Variables .
2×1 -
Xzt 1.5×3=0

A solution of the
system is a list (51,52 Sh ) Xi 4×3=-7
-




.
.
.




Of numbers that makes each equation a true statement when the values


51 , . . .

,
Sn are substituted for Xi , . . .
,Xn , respectively .




The set of all possible solutions is called the solution set of the linear

Two linear
system .


systems are called equivalent if
they have the same


solution set .



.




A system of linear equations is said to be consistent if it has either one


solution or
infinitely solutions is inconsistent if it has
many ; a system
no solutions .




The essential information of linear be recorded
a
system can compactly

in called matrix
a
rectangular array augmented
column
column

X, -


2×2 t X3 =
0 I -2 I row I -2 I 0


2×2 0×3 =
0 0 2 -0 0 2 -0 0
-




5×1 -


5×3 =
10 5 0 -5 5 0 -5 10


linear system coefficient matrix matrix
augmented


An
augmented matrix of a system consists of the coefficient matrix

with an added column containing the constants from the right side of the


equations
The size of a matrix tells how many rows and columns it has .




An m x n matrix contains m rows and n columns

The basic strategy to solve a linear system is to replace one system

with an equivalent system that is easier to solve .




Three basic to simplify linear
operations are used a
system :
1. replacement replace one row
by the sum of itself and a multiple

of another row


2. interchange interchange two rows


3. scaling multiply all entries in a row by a nonzero constant

, Two if there is of
matrices are called row
equivalent a sequence elementary
row operations that transform one matrix into the other


Two fundamental questions about a linear system are :




1. IS the system consistent ; that is, does at least one solution exist ?

2 .
If a solution exists ,
is it the only one ; that is ,
is the solution unique ?


1.2 row reduction and echelon forms



A nonzero row or column in a matrix means a row or column that contains

at least one nonzero entry .




A row)
leading entry refers to the leftmost nonzero entry ( in a nonzero

A
rectangular matrix is in echelon form if it has the following properties :




1 all nonzero rows are above rows of all zeros echelon matrix
.



any
2 -3 2 I
2. each leading entry of a row is in a column to the


right of the leading entry of the row above it 0 I -4 0
I
3 all entries in column below 0 0 0
.
a a
leading entry are zeros 2


If a matrix in echelon form satisfies the following additional conditions ,




then it is in reduced echelon form :

I 0 0
2g
4 the leading entry in each nonzero row is I
0 16
0 I
.




is in its column
5. each
leading 1 the only nonzero entry O 0 I 3

It a matrix A is now equivalent to an echelon matrix U ,
reduced echelon matrix


we call U an echelon form of A ;


if u is in reduced echelon form ,
we call U the reduced echelon form of # .




Uniqueness of the reduced echelon form

Each matrix is now equivalent to only one reduced echelon matrix .




A pivot position in a matrix A is a location in A that corresponds to a



leading 1 in the reduced echelon form of A. A pivot column is a column

of A that contains a pivot position .




A pivot is a nonzero number in a pivot position that is used as needed

to create zeros via row operations

pivot columns

*
I 4 5 -




g
-



7
am
* * *



0 4 form : 0
am
2 -6 -6 General * * *


*
pivot 0 0 0 0
am
0 0 -5 0

, row reduction algorithm to produce a matrix in echelon form :




This is
step I
begin with the leftmost nonzero column .
a pivot column .




The pivot position is at the top .




Step 2 select nonzero entry in the pivot column pivot If
a as
necessary
-

.
,




interchange rows to move this entry to the pivot position .




step 3 use row replacement operations to create zeros in all positions

below the pivot .




Step 4 cover cor ignore ) the row
containing the pivot position and


cover all rows ,
if
any ,
above it .

Apply steps I -3 to the


sub matrix that remains .
Repeat the process until there are no



more nonzero rows to
modify .




If we want the reduced echelon form ,
we perform one more step .




Step with the
5 beginning rightmost pivot and working upward and to


the left , create zeros above each pivot . If a pivot is not 1 ,




make it 1 by a scaling operation .




The combination of steps I -4 is called the forward phase of the row


reduction
algorithm . Step 5 is called the backward phase .




In the
following system of equations , the variables X, and Xz are called

basic variables and Xs is called a free variable .
The statement

"
Xz is free "
in the parametric description means that are free
you
to chose value for X3
any



{
.




I 0 -5 I ×,
-


5×3 = 1 Xi =
It 5×3

0 1 I 4 Xz TX3 = 4 Xz= 4 -
Xs

O O O O 0 =
0 Xz is free




whenever a system is inconsistent .
the solution set is empty , even

when the
system has free variables . In this case ,
the solution set


has no parametric representation .




Existence and uniqueness theorem

A linear consistent iff the rightmost column of the
system is augmented
matrix is not a
pivot column .
If a linear
system is consistent , then the

solution set contains either a unique solution or infinitely many
solutions c. when there is at least one free variable )

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lauraduits1 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
27
Lid sinds
3 jaar
Aantal volgers
18
Documenten
8
Laatst verkocht
3 maanden geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen