100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Discrete Wiskunde (INFOB3DW)

Beoordeling
-
Verkocht
-
Pagina's
24
Geüpload op
28-06-2022
Geschreven in
2021/2022

Samenvatting van alle stof die behandeld wordt bij het vak Discrete Wiskunde (INFOB3DW), zowel in het eerste deel als het tweede deel van het vak. Inclusief een groot aantal voorbeelden van dynamisch programmeren.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Onbekend
Geüpload op
28 juni 2022
Aantal pagina's
24
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Discrete Wiskunde

Basis 2

Genererende functies 3

Recurrente betrekkingen 6

Inclusie-Exclusie 9

Pólya theorie 12

Dynamisch programmeren 16

Algoritmen 20

,Basis
Productregel |Z| = |X| * |Y|
- Als gebeurtenis Z bestaat uit combinatie van delen X en Y en iedere mogelijkheid van X
kan worden gecombineerd met iedere mogelijkheid uit Y
- Bijvoorbeeld, het aantal verschillende pizza’s als je de keuze hebt uit 9 ingrediënten,
waarvan je er minstens 2 wilt is 29 - 10 (eerste ingrediënt 2 mogelijkheden, tweede
ingrediënt weer 2 mogelijkheden, etc.)
- OR
Somregel |Z| = |X| + |Y|
- Als Z kan worden opgesplitst in disjunce X en Y
- Bijvoorbeeld, het aantal pizza’s als je kunt kiezen uit 9 ingrediënten, maar je niet zowel
broccoli als ansjovis en niet zowel paprika als ansjovis kan nemen en er geldt dat je
sowieso ham neemt als je ook paprika neemt
- Splits oplossingsruimte op in deelverzamelingen, dus een deel pizza’s met
ansjovis en een deel zonder ansjovis
- Bij het deel met ansjovis heb je nog keuze uit 6 ingrediënten (ansjovis is al
gebruikt, broccoli en paprika kunnen niet), dus 26
- Bij deel zonder ansjovis splits je weer op in twee subsets wel en niet paprika
- In totaal geeft dit 4 * 26 = 256 mogelijkheden
- AND
Permutaties Beeldt ieder element af op willekeurig ander element, waarbij elk element precies
één keer wordt gebruikt
- Aantal mogelijke permutaties van n elementen = n!
- Overigens, n! = (n-1)! * n
- Of als een graaf: voor alle i, maak een edge van dit punt naar
punt 𝜋(i)
- Het aantal verschillende cykels in deze graaf is (n - 1)!, omdat je elk element met
(n - 1) elementen kan koppelen
- Stel je wilt het aantal mogelijkheden voor drietallen van letters voor initialen, dan kunnen
er ook rijtjes voorkomen met meerdere keren dezelfde letter, dus dan wordt het 263

P(succes) = aant succes / aant mogelijkheden
- Maar geldt alleen als iedere mogelijkheid dezelfde kans heeft!

P(n,r) = n!/(n-r)! -> volgorde, geen duplicates
Combinaties Aantal mogelijkheden om r elementen te kiezen uit een verzameling van n
elementen, waarbij de volgorde niet uitmaakt: C(n,r) = (n r) = n! / (n-r)! * r! = (n n-r)
- Bijvoorbeeld, voor een pizza waar je kan kiezen uit n ingrediënten en je k ingrediënten
op de pizza wilt, is het aantal mogelijkheden C(n,k) (ervan uitgaande dat volgorde niet
uitmaakt)

Standaardproblemen
- Chocolaatjes (trekken met teruglegging): je wilt een doos vullen met r chocolaatjes,
waarbij je kunt kiezen uit m smaken
- Er zijn C(n+m-1,m-1) mogelijkheden om de doos te vullen
- Ballen en dozen herkenbaar, dozen mogen leeg zijn: n ballen in k dozen, kn
mogelijkheden

, - Ballen onherkenbaar, dozen herkenbaar, dozen mogen leeg: chocolaatjes, dus
C(n+k-1,k-1)
- Ballen onherkenbaar, dozen herkenbaar, dozen mogen niet leeg: als boven, maar eerst
chocolaatje in elke doos stoppen, dus k minder opties voor de streepjes, C(n-1,k-1)
- Ballen herkenbaar, dozen onherkenbaar, dozen mogen niet leeg: Stirling getal van de
𝑘
1 𝑖 𝑛
tweede soort, 𝑆(𝑛, 𝑘) = 𝑘!
∑ (− 1) 𝐶(𝑘, 𝑖)(𝑘 − 𝑖)
𝑖=0
- Ballen herkenbaar, dozen onherkenbaar, dozen mogen leeg: splits probleem op basis
van aantal niet-lege dozen l, dan moet je de ballen verdelen over de l dozen, dus S(n,l),
wat in totaal geeft S(n,1) + S(n,2) + … + S(n,k)
- Ballen herkenbaar, dozen herkenbaar, dozen mogen niet leeg: voor elke oplossing
hierboven zijn er k! verschillende manieren om de dozen te nummeren van 1 tot k, dus
𝑘
𝑖 𝑛
𝑘! 𝑆(𝑛, 𝑘) = ∑ (− 1) 𝐶(𝑘, 𝑖)(𝑘 − 1)
𝑖=0
- Herkenbaar verschillende permutaties: een verzameling van n voorwerpen, verdeeld in
k groepen van identieke voorwerpen, dus van type j heb je nj stuks (j=1, …,k)
- Op hoeveel manieren kun je de n voorwerpen op een rij leggen zodat je een
herkenbaar verschillende rij krijgt?
- In totaal zijn er n! manieren om de hele verzameling te permuteren, maar voor
elke groep identieke voorwerpen zijn er nj! manieren om ze te permuteren
zonder het verschil te zien, dus daar moeten we de n! door delen en dat doen we
𝑛!
voor elke groep: 𝑛1! · 𝑛2! · ... · 𝑛𝑗!

- Als nu alle voorwerpen in groep 1 identiek worden zijn er voor elke
eerdere mogelijkheid n1! verschillende nieuwe mogelijkheden, dus
𝑛! 𝑛!
𝑛1! · 𝑛1! · 𝑛2! · ... · 𝑛𝑗!
= 𝑛2! · ... · 𝑛𝑗!

- Dit is een multinomiaal coëfficiënt ↙
- Bijvoorbeeld, bij een full house met drie 1’en en twee 2’en heb je twee groepen
van identieke dobbelstenen, dus C(5,2) mogelijkheden om zo’n full house te
gooien en er zijn 6 * 5 = 30 combinaties van x and y om een full house te gooien
met drie x’en en twee y’en, dus 30 * C(5,2) = 300 mogelijkheden om full house te
gooien met 5 dobbelstenen

Multinomiaal coëfficiënten




Genererende functies
Belangrijke machtreeksen

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Suniht Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
94
Lid sinds
4 jaar
Aantal volgers
55
Documenten
19
Laatst verkocht
5 uur geleden

3,9

13 beoordelingen

5
7
4
2
3
2
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen