100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Key Concepts of Data Science

Beoordeling
-
Verkocht
-
Pagina's
12
Geüpload op
22-06-2022
Geschreven in
2021/2022

Key Concepts of data science, lined out. This is part of my more comprehensive Data Science summary(50+ pages). Use this if you already know a lot about Data science otherwise buy the other document since that is the comprehensive summary + key concepts

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
22 juni 2022
Aantal pagina's
12
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

This document only contains the Key Concepts.

Buy my other summary for a 50+ pager for a more comprehensive explanation of everything


https://www.stuvia.com/doc/1809995/data-science-summary-key-concepts-more-compact-summary

, Key concepts

List of steps to take in data science Execute experiment:
1. Explore 1. Task definition
2. Formulate research question 2. Data collection
3. Data exploration
3. Structure and annotate data
4. Preprocessing
4. Develop and apply learning 5. Model learning
techniques 6. Evaluation
5. Evaluate on data
6. Answer the research question


List three challenges of working with data:
1. Noisy data
2. Small data / large data
3. Data can be incomplete

different sampling rates, different formats, wrongly chosen or irrelevant variables, large / unknown
number of classes, class imbalance, heterogeneous data / features, new domain, …

How to give a clear definition of a task, based on a given data set
:
● Research question
● Determine supervised vs unsupervised
● Classification or regression (or clustering if its unsu pervised)
● Problem definition:
○ Features and their type (binary, nominal(multi categorical), numerical)
○ Target labels and their type (binary, nominal, numerical)

Use median vs mean: Mean when the distribution is symmetrical and median otherwise.

Explain simple linear regression, multiple linear regression and logistic regression:

● Linear regression: Defines the relationship between two variables.
used to handle basic regressions (when the relation between two vars is clear
and simple),

● Multiple linear regression: defines relationship by more than one value
Used more complex connections between data (house prices need more
variables than bedrooms for example)

● Logistic regression: Discriminative model that learns to distinguish between two
classes
Used to handle classification problems

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jessedegans Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
17
Lid sinds
6 jaar
Aantal volgers
15
Documenten
8
Laatst verkocht
1 jaar geleden

3,5

4 beoordelingen

5
1
4
1
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen