100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Deep Learning Summary Final Exam

Beoordeling
-
Verkocht
7
Pagina's
82
Geüpload op
03-06-2022
Geschreven in
2021/2022

Extensive summary for the course 'Introduction to Deep Learning'. Including all lecture content (excl practicals) with extra notes and explanations added to make it the most clear.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
3 juni 2022
Aantal pagina's
82
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Introduction to Deep Learning (800883-B-6)
Summary Lectures Final Exam
CSAI year 3
Written by Saskia Kriege

,Lecture 1 – Introduction and MultiLayer Perceptron
Neural Networks
Train = changing parameters
Trying to optimize the black box by changing numbers (parameters), done by understanding
the error that the model makes
Use error to change parameters of the network, to estimate the actual function of the network

Universal Function Approximator
Approximate functions
Y = f(x) → output y, input y, figure out the function f(x)

Input x → NN (approximate an unknown function y = f(x)) → output y

History and Context – NOT EXAM MATERIAL
Ramon y Cajal → connectionist approach of how the brain works
Individual tissues doing individual ones doing computations by themselves → neurons
Those neurons were connected, connections changed how they were firing
Emerging from this is intelligence

McCulloch and Pitts
Computers were emerging, idea to build mathematical models of this idea of the brain
Logic Gates based on connectionist approach, little units putted together gives a more
complex thing
Based on Logic, input and output only 1’s and 0’s.

Rosenblatt
The Perceptron → idea we are still using for NN
Changed → how they’re trained and put together
Perceptron learning parameters (weights)
Weight + input gives a certain output

Perceptrons and the AI Winter
Minsky and Papert
You cannot solve simple problems with this perceptron → not taking us closer to what the
brain does
Basic problems cannot be solved (sort problem)

People stopped believing in AI, funding disappeared from research

The AI Winter
Some problems could not be solved, using a perceptron was not complete enough.

1980s Boom
Found out how to train network in different ways, got more interesting results
Journals, conferences appeared

Neocognitron – Fukushima → image processing for NN

Backpropagation

,What we use to train networks

Lecun → digit recognition

Another AI Winter → we didn’t have the data and computers to apply the methods we found
out

Big Data
Computers put together with a lot of data
2012 → The cat experiment → neurons learnt to respond to specific stimuli like cats

ImageNet = image database organized according to the WordNet hierarchy, in which each
node of the hierarchy is depicted by hundreds and thousands of images
→ has a lot of biases

AlexNet
Deep CNN trained on ImageNet using GPUs.
Hinton et al.

Generative Adversarial Networks
You have to generate data instead of other way around
Relevant in +- last 5 years

Deep Reinforcement Learning
Neural network
Inputs and expected output changes
How to produce behavior that’s relevant for a particular task

Feed in a frame, calculate error

Deep Learning
Inside AI we have ML (learning from data)
More narrow in ML we have Representation Learning (take the data, model has to figure out
what to do). Transform data into something else
More narrow DL → many layers, each layer trying to extract more abstract features

Practical Deep Learning

CPU vs GPU
GPUs allow for parallelism
CPU → sequential

CPU → each core can do 1 thing at a
time
GPU → you can do as much cores there
are at the same time

DL = multiplications and additions

, GPU allows us to do it more fast, CPU cores are more powerful, but GPU allows to do the
calculations at the same time
Networks require GPU, else it would be too slow

GPU can process many pieces of data at same time

The main difference between CPU and GPU architecture is that a CPU is designed to handle
a wide-range of tasks quickly (as measured by CPU clock speed), but are limited in the
concurrency of tasks that can be running. A GPU is designed to quickly render high-resolution
images and video concurrently.

The Perceptron
A model of a neuron
Dendrites (input) → body of neuron → axon (output)
Then it connects to other neurons through electrical chemical signals, interacting with other
neurons (synapse & synaptic cleft)

A simpler model of a neuron
Incoming dendrites → soma (S) (once threshold is passed), going to axon triggering the rest
Some will increase/decrease in the soma

Incoming dendrites summed together and passed on




Rosenblatt → Perceptron designed to illustrate some of the fundamental properties of
intelligent systems in general, without becoming too deeply enmeshed in the special, and
frequently unknown, conditions which hold for particular biological organisms

Inputs → black box → outputs
Inputs take signals, in the body there is a function that will accumulate those signals by a
summation
Inputs x1, x2, x3
There are weights in the arrows
Those are summed up in the body
Gives y

Linear Classifier → inputting some values and having some weights.
Linearly combining inputs and deciding if they fit given a pattern
Bigger than a threshold → belongs to a certain class

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
saskiakriege Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
74
Lid sinds
7 jaar
Aantal volgers
38
Documenten
19
Laatst verkocht
1 week geleden

4,7

7 beoordelingen

5
5
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen