100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

College aantekeningen Data-Analyse voor EBE (30K215-B-6) after midterm

Beoordeling
-
Verkocht
8
Pagina's
56
Geüpload op
09-05-2022
Geschreven in
2020/2021

in dit document staan alle slides van de hoorcolleges + uitleg van de docent (erg gedetailleerd) + alle r-codes met uitleg (hoe je eraan komt en wat het betekent) + de output in R-studio.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 mei 2022
Aantal pagina's
56
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Pavel cizek
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

CHAPTER 22: Multiple linear Regression, Model violations

Motivation:

•The market-model example:
(Y = ‘daily stock price of Heineken’ on X= ‘daily price of AEX’)
-model requirements were checked graphically
-transformation of Y and X into daily returns (%) was suggested
-visual observations can be misleading
–proper tests are needed

•Amazon ebook sales: no checks have been done!
(Y = `dollar sales from published ebooks’ on X= `ebookprice’)

•Baseball teams’ performance: no checks have been done!
(Y= `runs per season’ on X= `on-base and slugging percentages’)

•Wage differences: no significant differences detected (H0). Is it due to H0 being valid, small sample
size, or invalid assumptions?

22.1 Collinearity (=if the correlation between 1 explanatory variable and linear combination of some
other explanatory variables is very strong, it can lead to collinearity)

-does not influence SSE and hence the usefulness of the model
-but interpretation of the regression coefficient becomes harder
-the values of t-tests are biased towards zero
-proving the individual significances may be hard

What can be done? (against collinearity)
-only take action if necessary (collinearity isn’t always the case, there is a possibility of it)
-possible action: remove a perpetrating variable from the model or transform them into linearly
independent components
-if caused by squared or interaction terms, the problem can occasionally be solved by switching to
centered variables (if it is possible), that is, using

22.3: Non-linearity

Is the linearity in the basic assumption E ( Y )=β 0 + β 1 X appropriate?
Consequences? Model and estimates are incorrect IF LINEARITY IS VIOLATED!
What can be done? Find a correct model specification (for example logarithms, or dummies, etc)

 This can often be detected by studying the residuals

The existence of non-linearity can be tested as follows:
-estimate the original model E ( Y )=β 0 + β 1 X 1+ ..+ β k X k
-create the variable of the accompanying predictions ŷ
-extend the original model by including the square of the prediction (for example, with coefficient γ =
gamma!):

, First estimate
the normal model, after that
extend the model with PREDICT2
with using the cbind function
 conclusion: model should be
extended to a non-linear one!



22.2: Heteroskedasticity (if homoskedasticity is violated!)




Or of its second-order counterpart with interactions. The usefulness of this model, H 0 : E ( ε 2 ) =γ 0
indicates the presence of heteroskedasticity (if the x_K’s are not equal to 0, there is
homoskedasticity)

What can be done?

,- Heteroskedasticity-consistent standard errors can be used to obtain confidence intervals/tests
for parameter values
- Weighted least squares (not addressed here!)
not discussed in
lecture, because
there is
homoskedasticity
here!




Aux model is
explained by a linear
of quadratic function!
 it is gamma0 +
gamma1X1
 or gamma1X1 +
gamma 2 X1^2




Third step: regress aux model on price e-book (first option above). Alternative: regress aux model on
price e-book and square of e-book price! (=second option above!). We have to look to F-statistic and
its p-value to check whether the auxiliary model is useful

, Possible solutions as H 0 :γ =0 is rejected (because p-value < any reasonable alpha!):

- Heteroskedasticity consistent standard errors
- Weighted least squares estimation, that is, standardizing data so that errors become
homoscedastic

This is still the amazon example, and now we know there is heteroskedasticity!




standard output =
valid under homo- AND
heteroskedasticity! BUT,
standard error, t-value and
p-value are only valid
under homoscedasticity (if
obtained with lm-
command!)

 = alternative procedure
how to obtain the errors
that are also valid under heteroskedasticity! (ESTIMATED ARE FOR BOTH EQUAL!)

22.3 Non-normality (= not crucial for outcome!)

Consequences:

-the LS estimators are generally not normally distributed
-the LS estimators are not optimal anymore
-the statistical conclusions thus cannot be trusted
-however, these problems are less serious for large sample sizes (CLT implies that the LS-estimators
are approximately normal) with the main exception being prediction intervals

 Non-normality can be detected with the Kolgomorov-Smirnov, Shapiro-Wilk, or Lilliefors test and
other test procedures (see chapter 24)

What can be done?

- A perfect remedy does not exist

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Economiestudentje Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
73
Lid sinds
3 jaar
Aantal volgers
46
Documenten
0
Laatst verkocht
7 maanden geleden

3,8

10 beoordelingen

5
3
4
3
3
3
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen