we know oiz Tzvi with Vi known
suppose
=
"
Standard ize " 4 viyi '
vi ✗ i
'
P 11 *
9
t " *
= vici yi = ✗i P 1- Ei
] Ii E [ Ei ] v70
'
[|
'
8 s.t.US
[
'
] on this
eguationdoesgivea BLUE for p
'
E- Ei
"
= E vi. Ei = =
Vi =
mpin Én
'
'
is equivalent to yi' -
×,
#
p
Ê
'
hviryi
'
mn hvrixïp
'
-
2
min Én yi xiip
-
ruim
largervariance
Én
' >
"
WI
'
/ yi xïp ) with Wiz =
mp givesa smaller
-
Weight !
✗ik ÊXI
"
Ê xi
' "
bus
"
= ✗* ✗* =
*
Xi '
yi
'
i =1
E[Ei ] '
al/ assumptionShield , and unbiased & consistent
'
As =
T ,
WLS properties are :
i
varlbwis ) 0 / ✗* ✗* )
' ' .
'
2 =
In particular , WLS is more efficient than US ! 3 bus is BLUE
In practices vi often Unknown or unobserved sneed anestimate of the variante,
µ}
vector of
' '
1 OI = t
2- i Zi a
Estimation Methods : stepfeasiblewls & ML OI exp (zie Observaties
'
2- 2 =
Feasibk W 1 Estimate the variante parameters
a) apply Ols in y xp + { → bus stil/ consistent ander hetero
skedasticity-seizasymptoh.ca/lgunbiasedestimatorsotoi
=
'
.
b) the regressionseiz-zi.tt tlilorlogei ' t 1- Mi )
'
run = 2- i
2 Appply W with the estimatedvariancestoestimatep
Use the estimatedf to do WLS with e. g. Ôi ' z =
beurs
it-iaes.ym.at#wsistenty&asymptotica1lyeHicien1-land
Properties : consistent egaal
towls
multiplicatieve form : when correcties
is include
ij
ijIJ
IJ