100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Biomechanics book summary

Beoordeling
-
Verkocht
-
Pagina's
11
Geüpload op
15-04-2022
Geschreven in
2021/2022

Biomechanics book summary










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
15 april 2022
Aantal pagina's
11
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Biomechanics, Statics
Chapter 1
Length is used to locate the position of a point in space and thereby describe the size of a
physical system.
Time is conceived as a succession of events.
Mass is a measure of a quantity of matter that is used to compare the action of one body
with that of another.
Force is considered as a push or pull exerted by one body on another.

Idealizations are used in mechanics in order to simplify application of the theory. These are 3
important idealizations:
1. Particle, a particle has a mass, but a size that can be neglected.
2. Rigid body, a rigid body can be considered as a combination of a large number of
particles in which all the particles remain at a fixed distance from one another, both
before and after applying a load.
3. Concentrated force, represents the effect of a leading which is assumed to act at a
point on a body.

Newton’s three laws of motion
First law: a particle originally at rest, or moving in a straight line with constant velocity, tends
to remain in this state provided the particle is not subjected to an unbalanced force.
Second law: a particle acted upon by an unbalanced force F experiences an acceleration a
that has the same direction as the force and a magnitude that is directly proportional to the
force. If F is applied to a particle of mass m, this law may be expressed mathematically as
F=ma.
Third law: the mutual forces of action and reaction between two particles are equal,
opposite and collinear.

F=Gx(m1m2 : r^2)

SI units – metric system
10^9 giga (G)–10^6 mega (M)–10^3 Kilo (k)–10^-3 milli (m)–10^-6 micro (u)–10^-9 nano (n)

Do not use mm, cm, dm for example if N/mm write kN/m
Dimensional homogeneity, that is that each term of an equation must be expressed in the
same units.
Use engineering notation for significant figures, meaning three significant numbers.
As a general rule, any numerical figure ending in a number greater than five is rounded up
and a number less than five is not rounded up -> 3,5587 becomes 3.56.

Read the problem and try to correlate the actual physical situation with the theory studied.
Tabulate the problem data and draw to a large scale any necessary diagrams.
Apply the relevant principles, generally in mathematical form. When writing any equations,
be sure they are dimensionally homogeneous.
Solve the necessary equations, and report the answer with no more than 3 signs. Figures.

, Study the answer with tech. judgment and common sense to determine whether it seams
reasonable.

Chapter 2

Scalar is any positive or negative physical quantity that can be completely specified by its
magnitude.
Vector is any physical quantity that requires both a magnitude and a direction for its
complete description.
If a vector is multiplied by a + scalar, its magnitude is increased by that amount. X by a
negative scalar will also change the directional sense of the vector.

1. Join the tails of the components at a point
2. From the head of B draw a parallel line to A. Draw another line from the head of A
parallel to B. These two lines intersect at point P to form the adjacent sides of a
parallelogram.
3. The diagonal of this parallelogram that extends to P forms R, which then represents
the resultant vector R = A + B
We can also add B to A by using the triangle rule, whereby vector B is added to A in a head
to tail fashion the resultant R extends from the tail of A to the head of B. R = A + B = B + A

If A and B are collinear R = A + B.

R’ = A – B + A + (-B)
The rules from vector addition also apply to vector subtraction.

F1 + F2 = Fr
Fr is a resultant force
To find the two components of a force we use the reverse parallelogram

Addition of sevral forces Fr = (F1 + F2) + F3

Cosine law: C: the root of (A^2 + B^2 -2AB cos c)
Sine law: A:sin a = B:sin b = C: cos c

Scalar notation F = Fx + Fy
Fx = Fcos0 & Fy = Fsin0
Whenever italic symbols are written near vector arrows in figures, they indicate the
magnitude of the vector, which is always a positive quantity.
Cartesian vecor notation i&j. F = Fxi + Fyj
Coplanar force resultants
Fr = the root of ((Fr)x ^2 + (Fr)y^2)
0 = tan^-1 ((Fr)y : (Fr)x)

Chapter 3
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
annerixtvanderwal

Maak kennis met de verkoper

Seller avatar
annerixtvanderwal Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
3 jaar
Aantal volgers
1
Documenten
17
Laatst verkocht
4 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen