100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Behavioral Research Methods 2: Dealing With Data (0HV50)

Beoordeling
-
Verkocht
-
Pagina's
28
Geüpload op
14-04-2022
Geschreven in
2021/2022

A summary of behavioral research methods 2 with some examples of how to use Stata with the different data. All the stuff you need to know for the exam is in this summary.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
14 april 2022
Aantal pagina's
28
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Behavioral research methods Lectures

Lecture 1

Kinds of variables:
- Categorical / nominal
o Two or more categories without intrinsic ordering (kind of movie)
o When only two categories, also called binary variable or dummy variable
(gender)
- Ordinal
o Two or more categories with intrinsic ordering (5 point rating)
- Interval / continuous
o Ordinal + intervals between values are evenly spaces (age, income)

Y=
- Dependent variable
- Response variable
- Y- variable
- Explanandum
- Target variable

X=
- Independent variable
- X – variable
- Predictor variable
- Explanans

Experiment : researcher determines X  Manipulate
Survey : researcher measures X  measure

Dealing with data: general analysis setup
1. Check your data
a. To get acquainted with it
b. For outliers and coding errors
2. Determine the kind of analysis (X  Y)
3. Recode your data so that you have all variables in appropriate format, create new
variables from existing ones
4. Check the assumptions for the analysis of choice
5. Run your analysis
6. Check the rest of the assumptions

Lecture 2

Statistical inference
= concluding something about the population based on a sample

Procedure of hypothesis testing
1. Define H0 (this involves an equality, and from this, the Ha, immediately follows, that
is its complement)
2. Check the data, and calculate or simulate how likely it is to end up with your data if
H0 would be true (typically stat does this for you)
3. Draw a conclusion
4. Confidence intervals are sets of values for which H0 is not rejected

,Calculating how likely data is “under H0”

We need to know the distribution of this statistic, under H0, to know how likely it is that out
data is drawn from this distribution

Empirical distribution: the center
- Measures for the center of a distribution
o Median : 50% more and 50% less
o Mode : occurs most
o Mean  favorite
- Measures for the spread of the distribution
o Max – Min
o P75 – p25
o Standard deviation

Empirical distributions can take on any kind of shape.
We can measure the shape: skewness and kurtosis




The best know theoretical distribution: the standard normal distribution
- Has a mean mu and standard deviation sigma

Hypothesis testing terminology:
- H0 = the baseline of hypothesis
- Alpha = the probability of rejecting H0, when it is actually true (“how likely is it, if H0 is
true, that I get data as I have them, or data that are further away from H0?”)
- P-value < Alpha  H0 rejected
- H0 is always supported never true and rejected and not false

The central limit theorem
- The mean of a large enough sample from an arbitrary distribution has a shape of a
normal distribution

if p > 0.05 then H0 is supported, if p < 0.05 then H0 is rejected.

, Lecture 3 calculating scales

Item battery / scale




Item batteries
- Single question is a rough scale
- Item value consists of
o True value
o Item-specific value
o Noise
- With more items, noise cancels out
- With more items, distribution will be more normally distributed

Generating scale score

“alpha feeling*, gen (happy) item
Hist happy “

Scale score = mean of items (after reversing)
- Stata automatically transforms negative items, by adding a minus
- Scale is not from 1-6 any more

“replace feeling1 = 7 – feeling1
Replace feeling4 = 7 – feeling4
Alpha feeling*, gen (happy2) item
Hist happy2”

Recode = 1 specific value and replace = the whole row will be changed

Points of warning
- Scale score – mean of items
- Stata automatically determines a sign
- If you do not want this use
o “alpha varlist, gen (newvar) item asis”

Points of warning 2
- If almost all values are missing, a mean might be based on a single observation
- To ensure at leas 5 observations use:
o “alpha varlist, gen(newvar) item min (5)”

Points of warning 3
- If the values are not on the same scale, this will be wrong
- To ensure that variables have the same scale
o “alpha varlist, gen (newvar)std
€4,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
maritvanderlit

Maak kennis met de verkoper

Seller avatar
maritvanderlit Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
4 jaar
Aantal volgers
2
Documenten
2
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen