100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Summary of the Lectures of Statistics 2 - 2021/2022 + Additional Summary of the homework module

Beoordeling
-
Verkocht
2
Pagina's
101
Geüpload op
21-03-2022
Geschreven in
2021/2022

A complete summary with notes of the Statistics 2 lectures from 2021/2022 given by Peter Klaren. There is an additional summary of the online e-learning module "Systematic Reviews of Animal Studies" that was mandatory homework for one of the guest lectures.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 maart 2022
Aantal pagina's
101
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Peter klaren
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Lectures




STATISTICS 2
Lamker, Patricia
NWI- BB020C
Radboud University, 2022

,Table of Content
1. Lecture - Introduction ......................................................................................................................... 4
1.1 Example I ....................................................................................................................................... 5
1.1.1 Pregnancy outcomes in a study group exposed to cetirizine and a control group ............... 5
1.1.2 How do you look at the data? ................................................................................................ 5
1.1.3 How would you analyse the data? ......................................................................................... 5
1.2 Recapitulation: .............................................................................................................................. 6
1.2.1 Variables: Independent vs. dependent, qualitative vs. quantitative and choice of
statistical tests ................................................................................................................................ 6
1.2.2 Which tests? Analysing differences between sample with one independent variable. ....... 6
1.3 Back to the Example I .................................................................................................................... 6
1.3.1 Analysis of the cetirizine data using a  2 -test of Independence in JASP 0.16 ..................... 6
1.3.2 Analysis and interpretation of the cetirizine data ................................................................. 7
1.4 Example II ...................................................................................................................................... 8
1.4.1 Analysis of the amygdala data using linear regression in JASP 0.16 ...................................... 8
1.5 Why all this stuff about different choices in statistical analysis? ................................................. 9
1.6 Additional Notes ......................................................................................................................... 10
2. Lecture .............................................................................................................................................. 11
2.1 Sex/ Gender Bias ......................................................................................................................... 11
2.2 Factorial Experimental Designs ................................................................................................... 11
2.2.1 Looking for interactions between factors ............................................................................ 11
2.2.2. Analysing factorial experimental designs using contrasts .................................................. 18
2.3 Bottom lines ................................................................................................................................ 21
3. Lecture – Multiple Linear Regression (Spurious relationships, model selection) ............................. 22
3.1 Example “How to win a Nobel Prize” .......................................................................................... 22
3.1.1 Flavonols .............................................................................................................................. 22
3.1.2 Eat chocolate! ...................................................................................................................... 22
...................................................................................................................................................... 22
...................................................................................................................................................... 22
3.1.3 Eat chocolate? ...................................................................................................................... 22
3.1.4 Some context: Nobel laureates by country. ........................................................................ 22
3.1.5 A matter of national development? .................................................................................... 23
3.2 Recap Statistics 1 ........................................................................................................................ 23
3.2.1 A straight line: ...................................................................................................................... 23
3.2.2 Overview of linear regression calculations on a calibration curve: ..................................... 23



1

, 3.2.3 In multiple regression we will try to fit a best fitting hyperplane in more than two
dimensions (1DV, ≥ 2 IVs)............................................................................................................. 24
3.3 Why multiple linear regression? ................................................................................................. 24
3.4 Watch out for: ............................................................................................................................. 24
3.4.1 Simplification by dichotomization ....................................................................................... 24
3.4.2 Model abuse and spurious correlations & correlation =/ causation ................................... 27
3.4.3 The Simpson Paradox – an extreme example of a confounding variable............................ 32
3.5 Bottom lines: ............................................................................................................................... 34
4. Lecture – Power Analysis and Sample Size Calculation .................................................................... 35
4.1 Power Analysis ............................................................................................................................ 35
4.1.1 Biomedical research’s replication crisis ............................................................................... 35
4.2 Sample Size (n) determination .................................................................................................... 37
4.2.1 Example ................................................................................................................................ 37
4.2.2 The power of a statistical test indicates the sensitivity of a test to detect an effect when
there is one. .................................................................................................................................. 39
4.2.3 B – E – A – N – S (more on this later) ................................................................................... 39
4.2.4 How sample size, variability, and significance level affect power of a statistical analysis. 40
4.2.5 How many times will your test give a significant outcome when there is no difference
between groups? .......................................................................................................................... 40
4.2.6 Example – Biological Variation ............................................................................................. 41
4.2 ..................................................................................................................................................... 44
4.2.1 B – E – A – N – S.................................................................................................................... 44
4.2.2 Randomization and Stratification ........................................................................................ 48
4.3 Sample size calculations and power analyses using G*Power ................................................... 48
4.3.1 The bottom line when it comes to sample size: .................................................................. 49
4.3.2 Size does matter! ................................................................................................................. 49
4.3.3 Rule of thumb assuming a normal distribution ................................................................... 49
4.3.4 Formal calculation using the t-distribution .......................................................................... 50
4.3.5 Six approaches to justify sample sizes ................................................................................. 50
4.3.6 Six possible ways to think about effect size ......................................................................... 51
1. Guest Lecture – Dokter Media .......................................................................................................... 52
2. Guest Lecture – Syrcle....................................................................................................................... 54
2.1 Introduction to systematic reviews on animal studies ............................................................... 54
2.1.1 Steps of a systematic review ................................................................................................ 54
2.1.2 Benefits of preclinical SRs .................................................................................................... 54
2.1.3 Study Quality ........................................................................................................................ 55


2

, 2.1.4 Forest Plot ............................................................................................................................ 55
2.1.5 Subgroup Analysis ................................................................................................................ 56
2.1.6 Tools per phase .................................................................................................................... 56
2.2 Practical Data Extraction ............................................................................................................. 57
2.2.1 Types of outcome measures ................................................................................................ 57
2.2.2 Assignment – extracting outcome data ............................................................................... 57
2.2.3 Take Home Message ............................................................................................................ 59
2.3 Data-analysis and Meta-analysis................................................................................................. 60
2.3.1 Data-analysis or meta-analysis ............................................................................................ 60
2.3.2 Meta-analysis ........................................................................................................................... 60
2.3.3 From study data to forest plot ............................................................................................. 60
2.3.4 Choosing your effect size measure. continuous data .......................................................... 60
2.3.5 Continuous Data: MD vs. SD ................................................................................................ 61
2.3.6 Combining data – fixed vs. random effects ......................................................................... 61
2.3.7 Calculating the summary effect size .................................................................................... 62
2.3.8 Heterogeneity ...................................................................................................................... 62
2.3.9 Take Home Message ............................................................................................................ 63
2.4 Meta-analysis .............................................................................................................................. 64
2.4.1 Assessing publication bias: funnel plot ................................................................................ 64
5. Lecture – Bayesian inference ............................................................................................................ 66
5.1 Differences between classical frequentists and Bayesian statistical reasoning ......................... 66
5.1.2 Analysis of the cetirizine data. ............................................................................................. 66
5.1.2 Thomas Bayes (1701? – 1761) ............................................................................................. 68
5.2 Example ....................................................................................................................................... 68
5.2.1 Bayesian logic in interpreting laboratory tests. ................................................................... 68
5.2.2 Probability: sets and Venn diagrams. .................................................................................. 71
5.2.3 What is the probability that patient A carries the disease? Bayes’ theorem. .................... 72
5.3 p (A|B) ≠ p (B|A) ......................................................................................................................... 73
5.3.1 An example data set: Data from students in a statistics course, 2010-2011 ...................... 73
5.4 Bottom Lines ............................................................................................................................... 79


Additional: Summary online e-learning module Systematic Reviews of Animal Studies 80




3
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
pattylamker
1,0
(1)

Maak kennis met de verkoper

Seller avatar
pattylamker Hogeschool Van Hall Larenstein
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
3 jaar
Aantal volgers
4
Documenten
4
Laatst verkocht
8 maanden geleden

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen