100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Financial Modelling and Derivatives (FMD) - Summary Lectures

Beoordeling
-
Verkocht
1
Pagina's
30
Geüpload op
21-03-2022
Geschreven in
2022/2023

Summary of all the lectures of FMD, except the guest lecture which was a kind of summary of what was already taught.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 maart 2022
Aantal pagina's
30
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

SUMMARY FMD LECTURES




FINANCIAL MODELLING AND DERIVATIVES
*PLEASE DON’T DISTRIBUTE

, Financial Modelling and Derivatives

Lecture 1

Introductory lecture, not relevant for the exam

Lecture 2

To calculate the return of a stock for a particular period of time:




Or in other words: Return = Dividend Yield + Capital Gains

For calculating the expected return, we simply multiply each return with its respective
probability, and we sum everything up  E(R) = ∑ 𝑃𝑅 × 𝑅

Then we have the variance of the return  Var (R) = ∑ 𝑃𝑅 × (𝑅 − 𝐸[𝑅])2

This also gives us the standard deviation (volatility), which is easier to interpret than the
variance, because it is in the same units as the returns  SD (R) = √𝑉𝑎𝑟 (𝑅)



Because volatility is usually measured in % per annum, we have to annualize the volatility. If
we go from daily volatility to annual volatility  σannual = σdaily x √252 (there are 252 trading
days).

We can use a security’s historical average return to estimate its actual expected return. To
calculate the historical average annual return, we have to sum up each annual return and then
1
divide it by the total number of years  𝑅̅ = ∑𝑇𝑡=1 𝑅𝑡 . It looks complicated, but it is just the
𝑇

calculation of the average, so if we look at 3 years and they have a return of 10%, 20% and
30%, the average annual return would be (10 + 20 + 30)/3 = 20%.

1
For the historical variance  Var (R) = ∑𝑇𝑡=1(𝑅𝑡 − 𝑅̅)2
𝑇−1

Because the average return is just an estimate of the expected return, there will be some
𝑆𝐷 (𝑅)
estimation error, which is called standard error  SE =
√𝑇

,When having calculated the standard error, one can make a confidence interval. In the case
of a 95% confidence interval  Historical average return ± 1.96 * Standard error

If we look at a portfolio, we can calculate the weight for each investment by dividing the
𝑉𝑎𝑙𝑢𝑒 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑖
value of that investment by the total value of the portfolio  𝑥𝑖 = ,
𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

where x is the weight.

The return on portfolio is the weighted average of each investment in the portfolio. This is
calculated  𝑅𝑝 = ∑ 𝑥𝑖 𝑅𝑖 and for the expected return 𝐸[𝑅𝑝 ] = ∑ 𝑥𝑖 𝐸[𝑅𝑖 ]

The volatility of a portfolio is less than the volatility of individual stocks in that portfolio due
to diversification.

Finally, to find the risk of the portfolio, we must know the degree to which the assets’ returns
move together. We can measure this with the covariance and the correlation.

If the covariance is positive, the two returns tend to move together. If it’s negative, they tend
to move in opposite directions. The covariance can be calculated by doing the following:

𝐶𝑜𝑣(𝑅𝑖 , 𝑅𝑗 ) = 𝐸[(𝑅𝑖 − 𝐸[𝑅𝑖 ])(𝑅𝑗 − 𝐸[𝑅𝑗 ])]

For the historical covariance:




What the correlation tells us is by how much the stocks move together. Correlation does not
depend on their volatility and will be always between -1 and +1. To calculate correlation:




In a variance-covariance matrix like the one on the right, the diagonal
values going from up left to down right are the variances and the other
values are the covariances between both stocks. Because Cov (A, B) is
the same as Cov (B, A), they have both the same value (0.00055).

For the variance of a portfolio: Var (Rp) =

, Lecture 3

To calculate the variance of a large portfolio (this formula is easy to use if we use a variance-
covariance matrix):




If we look at a variance-covariance matrix, we have
n variance terms and (n2 – n) covariance terms. For
example, this table has 4 variables (A, B, C, D),
therefore n = 4, n being the number of variables.
Because in a variance-covariance matrix, there are n
variance terms, we have in this case 4 variance terms (diagonal line). There are also 12
covariance terms, because (42 – 4) = 12.

With this in mind, we can simplify the formula of the variance of a large portfolio for an
equally weighted portfolio (same amount invested in each stock):

1 1
𝑉𝑎𝑟(𝑅𝑃 ) = (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑜𝑐𝑘𝑠) + (1 − ) (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘𝑠)
𝑛 𝑛

As n increases, the variances of individual stocks
have less and less importance on determining the
total variance of the portfolio (because 1/n
decreases). Also, when n increases, the average
covariance between the stocks becomes more
important in determining the total variance. This
means that as you add more stocks, the
individual risks become less important, but the
correlated risk becomes more important.

To calculate the standard deviation of a portfolio with arbitrary weights:

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
juanvanwijngaarden Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
31
Lid sinds
5 jaar
Aantal volgers
28
Documenten
3
Laatst verkocht
1 dag geleden

4,3

3 beoordelingen

5
1
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen