100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of Human-Robot Interaction (0HM280)

Beoordeling
5,0
(1)
Verkocht
4
Pagina's
23
Geüpload op
14-03-2022
Geschreven in
2019/2020

Clear and concise summary of all lectures for the course 0HM280.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
14 maart 2022
Aantal pagina's
23
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Summary Human-Robot Interaction (0HM280)
Lecture 1 Probabilistic robotics 1
Uncertainties in robot navigation:

- Noisy sensors (random reading and calibration mistakes)
- Outdated maps (changes in furniture/position of people)
- Unknown location
- Inaccurate odometry and dead reckoning (programmed to go from A to B, but does
something different)

Solution: model uncertainties explicitly and develop ‘filters’ that update these uncertainties

Types of navigation:

- Navigation in open space
- Coastal navigation

Probabilistic multiple hypothesis tracking (doors example):

- No door detected, so equal distribution of location where it can be
- One door spotted, higher probability 3 at locations where there are doorsbelieve
state/posterior belief
- Robot moves further, probability moves with him and becomes more widely distributed as
there is extra movement uncertainty
- When it soon spots the second door, it knows certain that it is at door number 2

Fundamental notion of probability: we can assign a real number to a sample of a class of events

- Frequentist approach: based on counting and frequency of occurrence, problem when
there’s nothing to count
- Bayesian approach: probability of belief, a probability is a graded belief about an event, p is
degree of belief

Axioms:

- Pr(A) is the probability that A is true, it is a number between 0 and 1, A can be true or false
in which Pr(True) = 1 and Pr(False)=0
- Pr(A∨B) prob. That A or B is true, Pr(A∧B)prob. That A and B are true
- Pr(A∨ B) = Pr(A) + Pr(B) − Pr(A ∧ B) last part is correction for overlap between two circles
- P(-A), prob of not A

Random variables: variables with random values, outcome of event that is uncertain is expressed in
random variables, probability is a function of random variables:

- Discrete: e.g. Pr(single throw die rolls is a 6) outcomes are [1,2,3,4,5,6]
o P(X=xi) or P(xi) is a probability mass function
o Binomial probability distribution: tossing a coin n times, fair coin has
equal heads and tails so P=0.5
o Cumulative probability distribution: total probability of a value,
always increases
o Poison distribution: more skewed to the left
- Continuous: e.g. Pr(temp. will be below 25 degrees tomorrow), outcomes are continuous
o P(X=x) or p(x) is a probability density function, it’s about a range of values:

, o Two important continuous probability distributions
 Uniform probability density: equal probability for all values, X ~ U(a,b)

a ≤ x ≤ b, . The total area and probability is constant within
range a to b
 Normal or Gaussian probability density: mean u(mu) and width or standard
deviation σ (sigma), X ~ N(µ, σ2)random variable that follows a normal
distribution.




Standard normal distribution mu=0, sigma=1
 Exponential probability density function, used for time intervals




 Total area under probability function is always 1
 Continuous distributions always have a probability of a range, prob of a
value is always 0
 Cumulative probability density function: the probability density function is
the derivative of the cumulative prob function




Functions of random variables:

- Basic idea: , you start with the cumulative
probability of y and find the cumulative probability of x
- So the probability density is obtained by the derivative of the cumulative probability of x:




the chain rule
- If Y=X then Y<1 becomes -1<X<1
2

- So basic plan, first find cumulative density function F(x)=P(X<x), X is given so you can fill this
in and get P(Z..x), than you find the probability density function of X by

, Joint probability distribution: probability density function of more than 1 variable:

- Discrete Pr(X=x and Y=y) → P(x,y), continuous Pr(a<X<b and c<Y<d) → p(x,y)
- If X and Y are independent then P(x,y) = P(x) *P(y)

Conditional probability: we want to know the probability of one variable X for the given value of Y

- Pr(X|Y=y)
- Does not integrate to 1, but is fixed
- Discrete:

- Continuous:

- Law of total probability for discrete and continuous:

- So

- Bayes formula following from law of total prob

Bayesian statistics:

- Likelihood: sensory information, function of hypothesis p(observation|hypothesis), what is
the probability of observing 1.5m given that a person really is 1.6m tall
- Prior: independent of observation, prior knowledge about hypothesis
- Posterior: reflects belief in the hypothesis, takes prior knowledge into account P(x|y)

Conditioning: you can add conditional e.g. z to all terms

Conditional independence:

Is the same as and



Lecture 2 Design of interaction scenarios
Interaction scenario: describes a basic story which is a combination of simple robot actions and
interactions that will bring to accomplishment of a goal that a user of the robot needs

We need interaction scenarios because:

- Restriction of robot AI: It describes the key interactions and not all possible interactions
- Lack of domain knowledge: an interaction scenario is needed through which the robot can
execute tasks as trainer/teacher/therapist

Issues in HRI scenario creation: behavior of robot differs from expectation, environment can change.
Solution: try to include solutions for things that can go wrong

Creating an interaction scenario:

- Goal of the scenario and the affordances of the robot: what is the scenario, who is the user,
how can robot with certain embodiment and intelligence help in the goal
o Theory of mind Sally-anne: children say that it sally who left will look in the spot
where the ball is placed and don’t realize that sally didn’t see that and she will think
it is in the first place

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
julietwa Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
124
Lid sinds
8 jaar
Aantal volgers
84
Documenten
32
Laatst verkocht
8 maanden geleden

3,7

16 beoordelingen

5
3
4
7
3
5
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen