100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Differential Calculus

Beoordeling
3,0
(1)
Verkocht
1
Pagina's
5
Geüpload op
12-03-2022
Geschreven in
2021/2022

Overzichtelijke beknopte samenvatting van differentiaal calculus en Fourier transformaties met daarbij uitleg hoe je de formules gebruikt.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 maart 2022
Aantal pagina's
5
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Samenvattingen Wiskunde N2

, Sint × ) = Odd

cost ✗ ) =
even

even .
Odd - Odd



Fourierreeksen
even .
even = even

Odd Odd =
even

fourierreeks
-




en
even + even
-
-
even

Odd + Odd = Odd

Fourier series : infinite series that re
present period ic function in terms of sines and cosines Fourier Integral : Problems that invdve function that are non periode and are of
interest on the Whale × -
axis
Period ic function : f- IN for AN real ✗ ( except possible at some Points )
de fired > Consider
any period ic function f , (x) of period 2L that can be representeert by
and if there is a positive number p called the period Of f-IN ,
a Fourier series :


for which f- ( ✗ tp ) f- ( x )
=
; or : f- ( ✗ tnp ) =
f-( x ) •



Lo£1 ) s
( cost Wnx ) tbncoslwnx )) with Wn × =
ao +
„=,
an =




Fourier series for Zr period ic function s : f- IN lancoslnxltbnsinlnx)) with :
'



aotn
- = :
'
What happens if L
= , we let -
> as : the series turn into an
Integral




}
r as




ao =
In /
-
r
flxldx >
f- ( x ) =
/[ AIW ) COSIWX ) t Btw ) SINIWX ) dw ] with Fourier
integral coefficients
r
Fourier coefficients 0 as




an , yg„ „ „ „ „ „ „„
given by the AIW ) =

In / f ( v) COSIWV) dv
Euler f- ormulas das
-







£ / f- (
"



=L / f- ( sinlnxldx Btw ) v) sinlwv) dv
=

bn x)

- as
-
r



If f- ( x ) is
piecewise continuous in
every finite interval and has a right and
-




left hand der Native at every point and if the a ntegraiexists then f- ( x ) can Derepresented
Trigonometrie System Function zr ( sininx ) , cosinxl )
,
: with a
period of
↳ The
trigonometrie System is
orthogonalon.rs/srlalsoosxszr) ;
by a Fourier
integral .

ftp.ixildx
- as


of any functions in the trig System over that
that is : the Integral two .




At a
poinowhere f- ( x ) is dis continuous , the value of the Fourier integrale qu als the
interval is zero , so that for any integers hand m :
hand limits of
^
"M average of the left -

and right f- ( x ) at that point
{
-
.

°



-
|
r
COSINX ) COSIMX ) DX
= 0 for ( n =/ m) * Kronecker delta QMT
:
Smr 1 AM


Fourier BIW ) -01 integraal of Btw ) dd)
Integral I ff has Fourier
^
cosine : a
Integral representation and is ever, then


{
,

sincnx ) sinlmxld ✗ = 0 for in # m )
then the Fourier integral reduces to a Fourier cosine
as
Integral :




/ AIW { { f- (
i.| interval 0)
f- ( X ) =
) COSIWX ) dw with AIW ) = V) COSIWV ) dv
m)
sinlnx) COSIMX ) DX for in # morn ( Odd Integral symmetrie
= =
= 0 on
.


Fourier integral iff AIW ) even )
sine : has a Fourier
integral representation and is odd , the = 0 / integraal of AIW ) -
_




reducestoa Fourier sine integral :
then the jtourier integral as




Representation by a Fourier series : Jf f- ( x ) is
zr-periodicandpiecewi.se continuous in rsxsr -

f- ( X ) =

| Btw ) sincwx ) dw with BIW ) =
{ { f- In sinlwvldv
and we let f- (x ) have a left and right handed derivative
- -
at each a



Points of that interval , then the Fourier series ( has limit →
approaches real number)
converges a a as




|
coslwx ) kx
f- ( x )
21g e-
Its sum is except at points where f- ( x ) is dis continuous → there the sum of the series

is the
average of the left
-
and
right hand limits of f- ( x ) at ✗o .
Laplace integra / s :
k
'
t wz
dw =






as




f.
wsinlwx )
Fourier series for period 2L &
p
:
dw
7- e-
-
-
=

pz + wz

We set ✓= Î × ,
so dv = Ê dx ,
this
givesus :

Integral trans form
as



f- ( x ) =
aot an cos /Ê × + bnsin 7- × ; with :
: a transformation in the form of an Integral that producers from given function s
function s dep ending on a different variable
a a ,
New .




a. = te / f- klok > can be used in DE 's ,
P DE 's and Integral equations

an
.
_

:
Êfflxicos ( Ex)
L
"
Fourier cosinetransform : concerns even function and is obtained from the Fourier cosine
Integral

bn -
-




E.{ f- als in / 7- ) × "×
Set AIW ) = % Êclw) where c
suggests cosine



Writing v=x
gives
as
:




Even functions : f- c- × ) f- (x ) = ÊCIW ) =
# § FIX ) COSIWX ) dx } Fourier cosinetransform
as




VÉ}
If f- ( x ) is oneven function its Fourier series reduces to a Fourier cosine series :
h f- IN =
ÊCIW ) cos ( wxldx } inverse Fourier cosinetransform :

§ } { f- ÊIW)
as



f- ( X ) =

aotn =,
ancos (% ×
with coefficients ao =L flx ) DX ; an = IN cos
/7- ) DX ×
gives bach fl ✗ I from

Odd function s : f- 1- × ) = -

f- ( x ) Fourier sine trans form : concerns Odd function s and is obtained from the Fourier sine integral

Jf f- ( x ) is an Odd function its Fourier series reducestoa Fourier sine series : set BIW ) =
VÉFÌIW ) where s suggests sine
L


} / f- (7- ) DX Fc / f) Êclw )
as


f- ( x ) =

n= 1
bnsin % × with coefficients bn = IN Sin ×
Writing v. ×
as
gives : Other rotation s : =



0


ÊSIW )
ÊSIW ) VK.f.fi/1siniwxIdx } Fourier sinetransform Fs ( f )
a a =




| glxldx 2/91×1
-
-




Note : = DX for even g


[
L


VÉ Êslw ) sinlwx) DX } inverse Fourier sinetransform
-
0

L
f- IN = :


| hlxldx = 0 for Odd h
gives bach
fl ✗ I from ÊSIW )
* The Fourier transforms
operations : -51 aftbg ) AF / f) Fig )
[
are linear t b
-

=




Half range expansions Spitting the Fourier series
-
: in a Fourier sine series and Fourier cosine series as a




%/ | f- In eiw
" "
-




of the Fourier series :(Best approximation off trigonometrie pdynomial of the same degree N) complex form of the Fourier Integral f/✗ ) dvdw
The Nthpartial by : =
sum a
↳ error is as smalt as
possible cs cs
- -



N
"
Bnsinlnx ))
f-( x )
Aotn (An COSINX ) + Euler for make : e cost ✗ It Isin ( X )
= =
as
= ,




Square of F relative top

ftp.fsf/XIe--imdxJnverseFouriertransforml
Fourier transform ( complex ) ÊIW )
error on -
rsxsr : : =




}
r



| Ik}
"

ÊIW ) ÉN
"

}
' ' '


{
*

/Ao a) ]
'
E- (
f -

F) dx E- [ = r 2
-
t [(An -

an ) + (Bn -

bn)
complex) : f- IN =
dx
-
r n =/
" N


=/ fzdx [Zaoztn Ê f)
'

]
*
[ /anztbn )
'
with E- [
*
E ? E-
*
E:-[
*
BN Other rotation s : 5- If ) f F- (
b n r
If Aóao
only if
=
r > 0 and so and =
;
-
- -


, ,
. . .
.

=, as

r



f IÊIWIÎCIW
-

as



Bessel 's in
equality :
Zaoztn /anztbn )
'
s f / ✗ Îdx Total
energy of a
System
:

,
-
r - as



5- { f- ( x )}
'

For function f Parsevaistheoremholds that
such a is Bessel 's in
equality Fourier transform of the derivative : in 5- { Fix ) }
=
,
as

hdds the equality sign so that it becomes Parseval 's
a


Identity :


=/ / f x-p glpldp
,
n
Control ution f- * g hix ) f- * g) IN flplg / x-p ) dp
te / f- ( ✗ Îdx

: = ( =
/ )
Zaoz +
'
lanztbn ) =
- cs -
cs
na r
2nF / f)
5-( f #
g)
=

as
Fcg)
If # g) 1×1=9 ÊIW )
g iw) eindW
ij ij
- as

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
1 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
sterrehoefs Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
22
Lid sinds
3 jaar
Aantal volgers
1
Documenten
10
Laatst verkocht
1 maand geleden

3,5

4 beoordelingen

5
1
4
1
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen