100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Exam (elaborations) TEST BANK FOR Signals and Systems Analysis of Sign

Beoordeling
-
Verkocht
-
Pagina's
682
Cijfer
A+
Geüpload op
13-02-2022
Geschreven in
2021/2022

Exam (elaborations) TEST BANK FOR Signals and Systems Analysis of Sign If g t e t ( ) = − − 7 2 3 write out and simplify (a) g3 7 9 ( ) = − e (b) g2 7 7 22 3 7 2 ( ) − = = − − ( )− −+ te e t t (c) g t e t 10 4 7 5 11 +       = − − (d) g jt e j t ( ) = − − 7 2 3 (e) g g cos jt jt e e e e t jt jt ( ) + −( ) = + = ( ) − − − 2 7 2 7 2 3 2 2 3 (f) g g cos jt jt e e t jt jt  −      +  − −      = + = ( ) − 3 2 3 2 2 7 2 7 2. If g( ) xx x =− + 2 4 4 write out and simplify (a) g( )zz z =− + 2 4 4 (b) g( ) u v u v u v u v uv u v + = + ( ) − + ( ) += + + − − + 2 2 2 4 4 2 444 (c) g ee e e e e jt jt jt j t jt jt ( ) = ( ) − += − += − ( ) 2 2 2 44 44 2 (d) gg g ( ) ( )t tt tt tt = −+ ( ) = −+ ( ) − −+ ( ) + 2 2 2 2 44 44 4 444 g g( ) ( )tt t t t =− + − + 4 (e) g2 4 8 4 0 ( ) =−+= 3. What would be the numerical value of “g” in each of the following MATLAB instructions? (a) t = 3 ; g = sin(t) ; 0.1411 (b) x = 1:5 ; g = cos(pi*x) ; [-1,1,-1,1,-1] (c) f = -1:0.5:1 ; w = 2*pi*f ; g = 1./(1+j*w) ; M. J. Roberts - 7/12/03 Solutions 2-2 1 . . . . . . . . + + − −                 j j j j 4. Let two functions be defined by x , sin , sin 1 1 20 0 1 20 0 t t t ( ) = ( ) ≥ − ( ) <    π π and x , sin , sin 2 2 0 2 0 t t t t t ( ) = ( ) ≥ − ( ) <    π π . Graph the product of these two functions versus time over the time range, −<< 2 2 t . t -2 2 x(t) -2 2 5. For each function, g( )t , sketch g( ) −t , −g( )t , g( ) t −1 , and g 2( )t . (a) (b) t g(t) 2 4 t g(t) 1 -1 3 -3 t g(-t) -2 4 t g(-t) 1 -1 3 -3 t -g(t) 2 4 t -g(t) 1 -1 3 -3 t g(t-1) 1 3 4 t g(t-1) 1 2 3 -3 t g(2t) 1 4 t g(2t) 1 3 -3 2 1 2 - 6. A function, G( )f , is defined by M. J. Roberts - 7/12/03 Solutions 2-3 G rect f e f j f ( ) =       − 2 2 π . Graph the magnitude and phase of G G ( ) f f −10 10 over the range, + + ( ) −<< 20 20 f . G G rect rect f fe f e f jf jf ( ) − + + ( ) =  −      +  +      − − ( ) − + ( ) 10 10 10 2 10 2 2 10 2 10 π π f -20 20 |G( f )| 1 f -20 20 Phase of G( f ) -π π 7. Sketch the derivatives of these functions. (All sketches at end.) (a) g sinc ( )t t = ( ) ′( ) = ( ) − ( ) ( ) = ( ) − ( ) g cos sin cos sin t tt t t tt t t π ππ π π ππ π π 2 2 2 (b) g u t et t ( ) = − ( ) ( ) − 1 ′( ) = ≥ <       = ( ) − − g , , t u e t t e t t t 0 0 0 t -4 4 x(t) -1 1 t -4 4 dx/dt -1 1 t -1 4 x(t) -1 1 t -1 4 dx/dt -1 1 (a) (b) 8. Sketch the integral from negative infinity to time, t, of these functions which are zero for all time before time, t = 0. M. J. Roberts - 7/12/03 Solutions 2-4 g(t) t 1 12 3 1 2 g(t) t 1 123 ∫ g(t) dt ∫ g(t) dt t 1 123 1 2 t 1 123 9. Find the even and odd parts of these functions. (a) g( )ttt = −+ 2 36 2 ge t tt t t t ( ) = t − ++−( ) − −( ) + = + = + 2 3 62 3 6 2 4 12 2 2 6 2 2 2 2 go t tt t t t ( ) = t − +− −( ) + −( ) − = − = − 2 3 62 3 6 2 6 2 3 2 2 (b) g cos ( )t t = −      20 40  4 π π g cos cos e t t t ( ) = −       + −−      20 40  4 20 40 4 2 π π π π Using cos cos cos sin sin zz z z z z ( ) 12 1 2 1 2 + = () ( ) − () ( ) g cos cos sin sin cos cos sin sin e t t t t t ( ) = ( ) −       − ( ) −             + −( ) −       − −( ) −                           20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π g cos cos sin sin cos cos sin sin e t t t t t ( ) = ( )       + ( )             + ( )       − ( )                           20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π M. J. Roberts - 7/12/03 Solutions 2-5 g cos cos cos e ( )t tt =      20  ( ) = ( ) 4 40 20 2 40 π π π g cos cos o t t t ( ) = −       − −−      20 40  4 20 40 4 2 π π π π Using cos cos cos sin sin zz z z z z ( ) 12 1 2 1 2 + = () ( ) − () ( ) g cos cos sin sin cos cos sin sin o t t t t t ( ) = ( ) −       − ( ) −             − −( ) −       − −( ) −                           20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π g cos cos sin sin cos cos sin sin o t t t t t ( ) = ( )       + ( )             − ( )       − ( )                           20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π g sin sin sin o ( )t tt =      20  ( ) = ( ) 4 40 20 2 40 π π π (c) g t t t t ( ) = − + + 2 36 1 2 ge t t t t t t t ( ) = − + + + + + − 2 36 1 2 36 1 2 2 2 ge t tt t tt t t t ( ) = ( ) − + ( ) − + ++ ( )( ) + ( ) + ( ) − 2 3 61 2 3 61 1 1 2 2 2 ge t t t t t t ( ) = + + ( ) − = + − 4 12 6 2 1 6 5 1 2 2 2 2 2 go t t t t t t t ( ) = − + + − + + − 2 36 1 2 36 1 2 2 2 M. J. Roberts - 7/12/03 Solutions 2-6 go t tt t tt t t t ( ) = ( ) − + ( ) − − ++ ( )( ) + ( ) + ( ) − 2 3 61 2 3 61 1 1 2 2 2 go t tt t t t t t ( ) = −− − ( ) − = − + − 6 4 12 2 1 2 9 1 3 2 2 2 (d) g sinc ( )t t = ( ) g sin sin sin e t t t t t t t ( ) = ( ) + ( ) − − = ( ) π π π π π 2 π go ( )t = 0 (e) g( )tt t t = − ( ) 2 14 ( ) + 2 2 g( )tt t t = − ( )( ) + odd even even { 34 2 14 2 2 Therefore g( )t is odd, g g e o ( )t tt t t = 0 2 14 ( ) = − ( )( ) + 2 2 and (f) g( )tt t t = − ( ) 2 14 ( ) + ge t tt t t t t ( ) = ( ) 2 14 2 14 − ( ) + + −( )( ) + ( ) − 2 ge ( )t t = 7 2 go t tt t t t t ( ) = ( ) 2 14 2 14 − ( ) + − −( )( ) + ( ) − 2 go ( )tt t = − ( ) 2 4 2 10. Sketch the even and odd parts of these functions. M. J. Roberts - 7/12/03 Solutions 2-7 t g(t) 1 1 t g(t) 1 2 1 -1 t g (t) 1 1 t g (t) 1 2 1 -1 t g (t) 1 1 t g (t) 1 2 1 -1 e e o o (a) (b) 11. Sketch the indicated product or quotient, g( )t , of these functions. t 1 -1 1 -1 t -1 1 1 g(t) Multiplication t 1 -1 1 -1 t 1 -1 -1 1 g(t) g(t) g(t) Multiplication (a) (b) t 1 -1 1 -1 t -1 1 1 -1 M. J. Roberts - 7/12/03 Solutions 2-8 t 1 1 g(t) Multiplication (c) t -1 1 t 1 1 g(t) g(t) Multiplication (d) t 1 1 t -1 -1 1 g(t) t -1 1 1 (e) (f) t -1 1 1 -1 t -1 1 1 g(t) Multiplication ... ... t 1 1 -1 t 1 -1 1 g(t) Multiplication g(t) t -1 1 1 -1 ... ... g(t) t 1 1 -1 t 1 1 g(t) Division Division (g) t -1 -1 -1 1 1 1 g(t) g(t) (h) t 1 t π -1 1 1 t g(t) t -1 12. Use the properties of integrals of even and odd functions to evaluate these integrals in the quickest way. M. J. Roberts - 7/12/03 Solutions 2-9 (a) 2 2 22 4 1 1 1 1 1 1 0 1 ( ) + = +== − −− ∫ ∫∫ ∫ t dt dt t dt dt even odd { { (b) 4 10 8 5 4 10 8 5 8 10 8 10 1 20 1 20 1 20 1 20 1 20 1 20 0 1 20 cos sin cos sin cos ππ π π π π [ ] ( )t t dt t dt t dt t dt + ( ) = ( ) + ( ) = ( ) = − −− ∫ ∫ ∫∫ even odd (c) 4 10 0 1 20 1 20 t t dt odd even odd { 1 24 34 1 24 34 cos( ) π = − ∫ (d) t t dt t t dt t t t dt odd odd even { 1 24 34 1 24 34 sin sin cos cos 10 10 10 1 10 1 10 0 1 10 0 1 10 0 1 10 π π π π π π ( ) = ( ) = − ( ) + ( )          −  ∫∫ ∫ t t dt t odd odd even { 1 24 34 1 24 34 sin sin 10 2 1 100 10 10 1 50 1 10 1 10 2 0 1 10 π π π π π ( ) == + ( ) ( )           = − ∫ (e) e dt e dt e dt e e − t tt t − −−− − ∫∫∫ = = =−[ ] = − ( ) ≈ even { 1 1 0 1 0 1 0 1 1 2 2 2 2 1 1 264 . (f) t e dt t odd even odd { { 123 − − ∫ = 1 1 0 13. Find the fundamental period and fundamental frequency of each of these functions. (a) g cos ( )t t = 10 50 ( ) π f T 0 0 25 1 25 = = Hz s , (b) g cos ( )t t = +      10 50  4 π π f T 0 0 25 1 25 = = Hz s , (c) g cos sin ( )t tt = ( ) 50 15 π π + ( ) f T 0 0 25 15 2 2 5 1 2 5 = 0 4      GCD , . ,  = == . Hz s . (d) g cos sin cos ( )t tt t = ( ) + ( ) + −      23 5  3 4 ππ π π M. J. Roberts - 7/12/03 Solutions 2-10 f T 0 0 1 3 2 5 2 1 2 1 1 2 = 2      GCD , , Hz , s  = == 14. Find the fundamental period and fundamental frequency of g( )t . g(t) t ... ... 1 t ... ... 1 g(t) t ... ... 1 + (a) (b) t ... ... 1 g(t) t ... ... 1 + (c) (a) f T 0 0 3 1 3 = = Hz and s (b) f T 0 0 64 2 1 2 = GCD , Hz and s ( ) = = (c) f T 0 0 = GCD , Hz and s ( ) 65 1 1 = = 15. Plot these DT functions. (a) x cos sin n n n [ ] =       −  ( ) −     4  2 12 3 2 2 8 π π , − ≤< 24 24 n n -24 24 x[n] -7 7 (b) x n ne n [ ] = − 3 5 , − ≤< 20 20 n n -20 20 x[n] -6 6 (c) x n n [ ] = n      21  + 2 14 2 3 , −≤ < 5 5 n M. J. Roberts - 7/12/03 Solutions 2-11 n -5 5 x[n] -2000 2000 16. Let x cos 1 5 2 8 n n [ ] =       π and x2 6 8 2 n e n [ ] = − −      . Plot the following combinations of those two signals over the DT range, − ≤< 20 20 n . If a signal has some defined and some undefined values, just plot the d

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
13 februari 2022
Aantal pagina's
682
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

, M. J. Roberts - 7/12/03




Chapter 2 - Mathematical Description of Signals
Solutions
1. If g( t) = 7e −2 t − 3 write out and simplify

(a) g( 3) = 7e −9

(b) g(2 − t) = 7e −2( 2 − t ) − 3 = 7e −7 + 2 t

 t 
t
− −11
(c) g + 4 = 7e 5
 10 

(d) g( jt) = 7e − j 2 t − 3

g( jt) + g(− jt) e − j 2t + e j 2t
(e) = 7e −3 = 7e −3 cos(2 t)
2 2
 jt − 3  − jt − 3
g  + g 
 2   2  e − jt + e jt
(f) =7 = 7 cos( t)
2 2

2. If g( x ) = x 2 − 4 x + 4 write out and simplify

(a) g( z) = z 2 − 4 z + 4

g( u + v ) = ( u + v ) − 4 ( u + v ) + 4 = u 2 + v 2 + 2 uv − 4 u − 4 v + 4
2
(b)

g(e jt ) = (e jt ) − 4 e jt + 4 = e j 2 t − 4 e jt + 4 = (e jt − 2)
2 2
(c)

g(g( t)) = g( t 2 − 4 t + 4 ) = ( t 2 − 4 t + 4 ) − 4 ( t 2 − 4 t + 4 ) + 4
2
(d)

g(g( t)) = t 4 − 8 t 3 + 20 t 2 − 16 t + 4

(e) g(2) = 4 − 8 + 4 = 0

3. What would be the numerical value of “g” in each of the following MATLAB
instructions?

(a) t = 3 ; g = sin(t) ; 0.1411

(b) x = 1:5 ; g = cos(pi*x) ; [-1,1,-1,1,-1]

(c) f = -1:0.5:1 ; w = 2*pi*f ; g = 1./(1+j*w) ;



Solutions 2-1

, M. J. Roberts - 7/12/03




0.0247 + j 0.155 
0.0920 + j 0.289 
 
 1 
 
0.0920 − j 0.289 
0.0247 − j 0.155 

4. Let two functions be defined by

1 , sin(20πt) ≥ 0 t , sin(2πt) ≥ 0
x1 ( t) =  and x 2 ( t) =  .
−1 , sin(20πt) < 0 − t , sin(2πt) < 0

Graph the product of these two functions versus time over the time range, −2 < t < 2 .
x(t)
2


t
-2 2

-2


5. For each function, g( t) , sketch g(− t) , − g( t) , g( t − 1) , and g(2t) .

(a) (b)
g(t) g(t)


4 3

-1
2
t 1
t

-3


g(-t) g(-t) -g(t) -g(t)


4 3 3

-1 1
-2
t 1
t 2
t t
-1
-3 4 -3
g(t-1) g(t-1) g(2t) g(2t)


4 3 4 3
-1
2
1 3
t 1 2
t 1
t 1
t
2
-3 -3



6. A function, G( f ) , is defined by




Solutions 2-2

, M. J. Roberts - 7/12/03


 f
G( f ) = e − j 2πf rect   .
 2

Graph the magnitude and phase of G( f − 10) + G( f + 10) over the range, −20 < f < 20 .

 f − 10   f + 10 
G( f − 10) + G( f + 10) = e − j 2π ( f −10) rect   + e ( ) rect 
− j 2π f +10

 2   2 

|G( f )|
1




f
-20 20



Phase of G( f )
π


f
-20 20




7. Sketch the derivatives of these functions.

(All sketches at end.)


π 2 t cos(πt) − π sin(πt) πt cos(πt) − sin(πt)
(a) g( t) = sinc( t) g′ ( t) = =
(πt) 2 πt 2


e − t , t ≥ 0 − t
(b) g( t) = (1 − e −t
) u(t) g′ ( t) =   = e u( t)
0 , t < 0


(a) (b)
x(t) x(t)
1 1
t t
-4 4 -1 4
-1 -1
dx/dt dx/dt
1 1
t t
-4 4 -1 4
-1 -1


8. Sketch the integral from negative infinity to time, t, of these functions which are zero for
all time before time, t = 0.



Solutions 2-3
€15,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
COURSEHERO2

Maak kennis met de verkoper

Seller avatar
COURSEHERO2 Maastricht University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
2
Documenten
82
Laatst verkocht
11 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen