100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Exam (elaborations) TEST BANK FOR Statistical Physics of Particles By

Beoordeling
-
Verkocht
-
Pagina's
216
Cijfer
A+
Geüpload op
13-02-2022
Geschreven in
2021/2022

Exam (elaborations) TEST BANK FOR Statistical Physics of Particles By Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 III. Kinetic Theory of Gases . . . . . . . . . . . . . . . . . . . . . . . . 38 IV. Classical Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . 72 V. Interacting Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 93 VI. Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . 121 VII. Ideal Quantum Gases . . . . . . . . . . . . . . . . . . . . . . . . 138 Problems for Chapter I - Thermodynamics 1. Surface tension: Thermodynamic properties of the interface between two phases are described by a state function called the surface tension S. It is defined in terms of the work required to increase the surface area by an amount dA through dW¯ = SdA. (a) By considering the work done against surface tension in an infinitesimal change in radius, show that the pressure inside a spherical drop of water of radius R is larger than outside pressure by 2S/R. What is the air pressure inside a soap bubble of radius R? • The work done by a water droplet on the outside world, needed to increase the radius from R to R + ∆R is ∆W = (P − Po) · 4πR2 · ∆R, where P is the pressure inside the drop and Po is the atmospheric pressure. In equilibrium, this should be equal to the increase in the surface energy S∆A = S · 8πR · ∆R, where S is the surface tension, and ∆Wtotal = 0, =⇒ ∆Wpressure = −∆Wsurface , resulting in (P − Po) · 4πR2 · ∆R = S · 8πR · ∆R, =⇒ (P − Po) = 2S R . In a soap bubble, there are two air-soap surfaces with almost equal radii of curvatures, and Pfilm − Po = Pinterior − Pfilm = 2S R , leading to Pinterior − Po = 4S R . Hence, the air pressure inside the bubble is larger than atmospheric pressure by 4S/R. (b) A water droplet condenses on a solid surface. There are three surface tensions involved Saw, Ssw, and Ssa, where a, s, and w refer to air, solid and water respectively. Calculate the angle of contact, and find the condition for the appearance of a water film (complete wetting). • When steam condenses on a solid surface, water either forms a droplet, or spreads on the surface. There are two ways to consider this problem: Method 1: Energy associated with the interfaces 1 In equilibrium, the total energy associated with the three interfaces should be minimum, and therefore dE = SawdAaw + SasdAas + SwsdAws = 0. Since the total surface area of the solid is constant, dAas + dAws = 0. From geometrical considerations (see proof below), we obtain dAws cos θ = dAaw. From these equations, we obtain dE = (Saw cos θ − Sas + Sws) dAws = 0, =⇒ cos θ = Sas − Sws Saw . Proof of dAws cos θ = dAaw: Consider a droplet which is part of a sphere of radius R, which is cut by the substrate at an angle θ. The areas of the involved surfaces are Aws = π(R sin θ) 2 , and Aaw = 2πR2 (1 − cos θ). Let us consider a small change in shape, accompanied by changes in R and θ. These variations should preserve the volume of water, i.e. constrained by V = πR3 3

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
13 februari 2022
Aantal pagina's
216
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

, Problems & Solutions



for

Statistical Physics of Particles



Updated July 2008

by

Mehran Kardar
Department of Physics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, USA

, Table of Contents


I. Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II. Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
III. Kinetic Theory of Gases . . . . . . . . . . . . . . . . . . . . . . . . 38
IV. Classical Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . 72
V. Interacting Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 93
VI. Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . 121
VII. Ideal Quantum Gases . . . . . . . . . . . . . . . . . . . . . . . . 138

, Problems for Chapter I - Thermodynamics

1. Surface tension: Thermodynamic properties of the interface between two phases are
described by a state function called the surface tension S. It is defined in terms of the
work required to increase the surface area by an amount dA through d̄W = SdA.
(a) By considering the work done against surface tension in an infinitesimal change in
radius, show that the pressure inside a spherical drop of water of radius R is larger than
outside pressure by 2S/R. What is the air pressure inside a soap bubble of radius R?
• The work done by a water droplet on the outside world, needed to increase the radius
from R to R + ∆R is
∆W = (P − Po ) · 4πR2 · ∆R,

where P is the pressure inside the drop and Po is the atmospheric pressure. In equilibrium,
this should be equal to the increase in the surface energy S∆A = S · 8πR · ∆R, where S
is the surface tension, and

∆Wtotal = 0, =⇒ ∆Wpressure = −∆Wsurface ,

resulting in
2S
(P − Po ) · 4πR2 · ∆R = S · 8πR · ∆R, =⇒ (P − Po ) = .
R

In a soap bubble, there are two air-soap surfaces with almost equal radii of curvatures,
and
2S
Pfilm − Po = Pinterior − Pfilm = ,
R
leading to
4S
Pinterior − Po = .
R
Hence, the air pressure inside the bubble is larger than atmospheric pressure by 4S/R.
(b) A water droplet condenses on a solid surface. There are three surface tensions involved
S aw , S sw , and S sa , where a, s, and w refer to air, solid and water respectively. Calculate
the angle of contact, and find the condition for the appearance of a water film (complete
wetting).
• When steam condenses on a solid surface, water either forms a droplet, or spreads on
the surface. There are two ways to consider this problem:
Method 1: Energy associated with the interfaces

1
€10,59
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
COURSEHERO2

Maak kennis met de verkoper

Seller avatar
COURSEHERO2 Maastricht University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
2
Documenten
82
Laatst verkocht
11 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen