100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Statistiek Voor Bedrijfswetenschappen (Y50234)

Beoordeling
-
Verkocht
10
Pagina's
261
Geüpload op
09-02-2022
Geschreven in
2021/2022

Werd hier reeds 11 keer verkocht, maar helaas door ze 1x gratis te maken zie je niet meer dat deze al 11 keer verkocht werd. Ook alleen maar positieve recensies! Dit is een volledige samenvatting van de cursus en lessen statistiek van het AJ . De cursus staat volledig in het Engels, dit document is volledig in het Nederlands (Examen is ook in het Nederlands). Alles wat in de les besproken is komt hierin aan bod (voorbeelden, uitleg van het softwareprogramma RStudio en RFC, ...). Aangezien het examen openboek is, is het echt supergemakkelijk om dit document te gebruiken. Gewoon CTRL + F, en je vind letterlijk alles terug met heel veel voorbeelden uit de les. De eerste 2 hoofdstukken kan je GRATIS terugvinden bij mijn andere documenten op mijn profiel. Zo kan je zien hoe het document geschreven is, alvorens over te gaan tot aankoop. Je kan de samenvatting ook op Knoowy kopen, daar is ze goedkoper!

Meer zien Lees minder
Instelling
Vak

















Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
9 februari 2022
Aantal pagina's
261
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistiek voor
bedrijfswetenschappen
Notities




Docent: Patrick Wessa
Academiejaar: 2021 - 2022

,
,INHOUDSOPGAVE
HOOFDSTUK 1: Getting Started ...................................................................................................... 1
1.1.2.0.6 Compendium.................................................................................................................. 1
1.4.1 Werking R Framework ......................................................................................................... 1
1.4.2 Univariaat ............................................................................................................................ 1
1.4.3 Bivariaat............................................................................................................................... 1
1.4.4 Trivariaat .............................................................................................................................. 1
1.4.5 Multivariaat .......................................................................................................................... 1
1.4.7 Reproduceren ...................................................................................................................... 1
1.5 Collaborative Compendium Writing ......................................................................................... 1
1.7 Instant Messaging ................................................................................................................... 2
HOOFDSTUK 2: Introduction to Probability...................................................................................... 3
2.1 Definities van waarschijnlijkheden........................................................................................... 3
2.1.0.0.2 Doorsnede ..................................................................................................................... 3
2.1.0.0.3 Unie ............................................................................................................................... 3
2.1.0.0.6 Exclusiveness ................................................................................................................ 3
2.3. Theorema van Bayes ............................................................................................................. 4
2.3.0.0.2 Voorbeeld ...................................................................................................................... 6
2.3.0.0.3 Sensitiviteit en Specificiteit ............................................................................................. 7
2.4 Multinomiale Naive Bayes Classificatiemodel ......................................................................... 9
2.4.2 Voorbeeld ............................................................................................................................ 9
2.4.3 Interactie-effecten .............................................................................................................. 10
2.4.4 Nulkansen .......................................................................................................................... 11
2.4.5 Types of Naive Bayes Classifiers ....................................................................................... 12
2.5 Wet van de grote getallen ..................................................................................................... 12
2.5.1 Weak Law of Large Numbers ............................................................................................. 16
HOOFDSTUK 3: Probability Distributions ...................................................................................... 19
3.1. Statistische maatregelen van de waarschijnlijkheidsverdeling .............................................. 19
3.2 Discrete verdelingen ............................................................................................................. 19
3.2.1 Bernoulli verdeling ............................................................................................................. 19
3.2.1.6 Doel ................................................................................................................................ 19
3.2.2 Binomiale verdeling............................................................................................................ 20

,3.2.2.6 R Module ........................................................................................................................ 20
3.2.2.7 Voorbeeld ....................................................................................................................... 22
3.2.3 Multinomiale verdeling ....................................................................................................... 22
3.2.3.4. Doel ............................................................................................................................... 22
3.3 Continue verdelingen ............................................................................................................ 22
3.3.1 Uniforme verdeling ............................................................................................................. 22
3.3.1.1 Dichtheidsfunctie............................................................................................................. 23
3.3.1.2 Verdelingsfunctie ............................................................................................................ 23
3.3.1.11 Doel .............................................................................................................................. 23
3.3.1.12 Voorbeeld ..................................................................................................................... 23
3.3.2 Normaalverdeling (of Gauss curve) .................................................................................... 24
3.3.2.1 Dichtheidsfunctie............................................................................................................. 24
3.3.2.2 Verdelingsfunctie ............................................................................................................ 24
3.3.2.19 Parameter Estimation.................................................................................................... 25
3.3.2.19.1 R Module ................................................................................................................... 25
3.3.2.19.2 Voorbeeld .................................................................................................................. 26
3.3.2.20 Random number generator ........................................................................................... 27
3.3.2.20.1 R Module ................................................................................................................... 28
3.3.2.20.2 Voorbeeld .................................................................................................................. 30
3.3.2.34 Doel .............................................................................................................................. 30
3.3.2.35 Gaussian (of : Normal) Naive Bayes Classifier .............................................................. 30
3.3.2.35.2 R Module ................................................................................................................... 30
3.3.2.35.3 Voorbeeld .................................................................................................................. 34
3.3.3 Chi verdeling ...................................................................................................................... 34
3.3.3.4 Random number generator ............................................................................................. 34
3.3.4 Chi-kwadraatverdeling (met 1 parameter) .......................................................................... 34
3.3.4.11 R Module ...................................................................................................................... 35
3.3.4.12 Voorbeeld ..................................................................................................................... 35
3.3.4.13 Random number generator ........................................................................................... 36
3.3.4.16 Relaties met andere functies ......................................................................................... 36
3.3.6 Student T verdeling ............................................................................................................ 37
3.3.6.9 Random number generator ............................................................................................. 37
3.3.7 Fisher F verdeling .............................................................................................................. 38

, 3.3.7.9 Random generator .......................................................................................................... 38
Conclusies .................................................................................................................................. 38
HOOFDSTUK 4: Descriptieve statistiek en exploratieve data analyses.......................................... 41
4.1 Types of data ........................................................................................................................ 41
4.1.1 Kwalitatieve data ................................................................................................................ 41
4.1.2 Kwantitatieve data.............................................................................................................. 41
4.2 Kwalitatieve data................................................................................................................... 42
4.2.2 Frequency Plot................................................................................................................... 42
4.2.2.2 R Module ........................................................................................................................ 42
4.2.2.3 Doel ................................................................................................................................ 43
4.2.3 Frequentietabel .................................................................................................................. 43
4.2.3.2 R Module ........................................................................................................................ 43
4.2.4 Contingentietabel ............................................................................................................... 43
4.2.4.2 Voorbeeld ....................................................................................................................... 44
4.2.5 Binomiale classificatie maatstaven. .................................................................................... 44
4.2.5.2 Voorbeeld ....................................................................................................................... 44
4.2.5.3 Confusion Matrix ............................................................................................................. 45
4.3 Kwantitatieve data ................................................................................................................ 46
4.3.1 Stem-and-Leaf Plot (NL: stam en blad) .............................................................................. 46
4.3.1.2 R Module ........................................................................................................................ 46
4.3.1.4.1 Voordeel ...................................................................................................................... 46
4.3.1.5 Voorbeeld ....................................................................................................................... 47
4.3.2 Histogram .......................................................................................................................... 47
4.3.2.2 R Module ........................................................................................................................ 47
4.3.2.3 Doel ................................................................................................................................ 49
4.3.2.4.2 Nadeel ......................................................................................................................... 49
4.3.2.5 Voorbeeld ....................................................................................................................... 49
4.3.3 Kwantielen ......................................................................................................................... 50
4.3.3.1 Kwantielen gebaseerd op gewogen gemiddelden op Xnq ................................................ 50
4.3.3.1.2 Voorbeeld .................................................................................................................... 50
4.3.3.9 Harrel-Davis kwantielen .................................................................................................. 52
4.3.4 Central Tendency............................................................................................................... 53
4.3.4.2 Rekenkundig gemiddelde ................................................................................................ 53

,4.3.4.2.9 Nadelen ....................................................................................................................... 53
4.3.4.3 Gewogen gemiddelde ..................................................................................................... 53
4.3.4.4 Geometrisch gemiddelde ................................................................................................ 53
4.3.4.4.2 Doel ............................................................................................................................. 53
4.3.4.4.4 Voorbeeld .................................................................................................................... 53
4.3.4.5 Harmonisch gemiddelde ................................................................................................. 54
4.3.4.5.4 Voorbeeld .................................................................................................................... 54
4.3.4.5.6 Nadelen ....................................................................................................................... 55
4.3.4.6 Kwadratisch gemiddelde ................................................................................................. 55
4.3.4.7 Root Mean Square .......................................................................................................... 55
4.3.4.12 Mediaan ........................................................................................................................ 55
4.3.4.12.2 Doel ........................................................................................................................... 55
4.3.4.12.3 Voorbeeld .................................................................................................................. 56
4.3.4.13 Midrange of Midextreme ............................................................................................... 56
4.3.4.13.3 Voorbeeld .................................................................................................................. 56
4.3.4.15 Tukey’s Trimean ........................................................................................................... 56
4.3.4.17 Trimmed Mean .............................................................................................................. 57
4.3.4.20 Doel van de Central Tendency ...................................................................................... 58
4.3.5 Variabiliteit ......................................................................................................................... 58
4.3.5.1 Range ............................................................................................................................. 58
4.3.5.4 Variantie (biased) ............................................................................................................ 58
4.3.5.5 Variantie (unbiased) ........................................................................................................ 59
4.3.5.6 Standaarddeviatie (biased) ............................................................................................. 59
4.3.5.12 Mean Absolute Deviation (MAD) ................................................................................... 59
4.3.5.17 Interkwartiel verschil...................................................................................................... 59
4.3.5.31 R Module ...................................................................................................................... 59
4.3.6.6 D’Agostino Skewness Test ............................................................................................. 60
4.3.6.8 Definition of Kurtosis ....................................................................................................... 60
4.3.6.12 Simultaan Skewness & Kurtosis testen ......................................................................... 60
4.3.6.14 R Module ...................................................................................................................... 61
4.3.8 Notched Boxplot ................................................................................................................ 63
4.3.8.16 Voordelen ..................................................................................................................... 65
4.3.8.17 Voorbeeld ..................................................................................................................... 65

,4.3.9 Scatterplot ......................................................................................................................... 66
4.3.9.2 R Module ........................................................................................................................ 66
4.3.9.5 Voorbeeld ....................................................................................................................... 68
4.3.10 Pearson Correlatie ........................................................................................................... 68
4.3.10.3 Determinatiecoëfficiënt.................................................................................................. 68
4.3.10.5 R Module ...................................................................................................................... 69
4.3.10.7 Phi coëfficiënt ............................................................................................................... 70
4.3.10.8.2 Nadelen ..................................................................................................................... 71
4.3.10.10 Taak............................................................................................................................ 71
4.3.11 Rank Correlation .............................................................................................................. 72
4.3.11.1 Spearman Rank Order Correlatie .................................................................................. 72
4.3.11.2 Kendall ’s Rank Order Correlatie ................................................................................... 72
4.3.11.3 R Module ...................................................................................................................... 72
4.3.11.5.1 Voordelen .................................................................................................................. 73
4.3.11.6 Voorbeeld 1 .................................................................................................................. 73
4.3.11.7 Voorbeeld 2 .................................................................................................................. 73
4.3.12 Partiële Pearson Correlation ............................................................................................ 74
4.3.12.2 R Module ...................................................................................................................... 74
4.3.12.5 Voorbeeld ..................................................................................................................... 75
4.3.13 Enkelvoudige Lineaire regressie ...................................................................................... 76
4.3.13.1.1 Model Assumptie 1 ................................................................................................ 76
4.3.13.1.2 Model assumptie 2 ..................................................................................................... 77
4.3.13.1.2 Model assumptie 3 ................................................................................................ 77
4.3.13.2 R Module ...................................................................................................................... 77
4.3.15 Kwantiel-Kwantiel Plot (QQ Plot) ...................................................................................... 78
4.3.15.2 R Module ...................................................................................................................... 79
4.3.15.3 Doel .............................................................................................................................. 80
4.3.17 Probability Plot Correlation Coefficient Plot (PPCC Plot) .................................................. 80
4.3.17.2 R Module ...................................................................................................................... 81
4.3.17.5 Voorbeeld ..................................................................................................................... 83
4.3.18 Kernel Density Estimation ................................................................................................ 83
4.3.18.5 Gaussian Kernel ........................................................................................................... 84
4.3.18.7 R Module ...................................................................................................................... 84

, 4.3.18.10 Voorbeeld ................................................................................................................... 85
4.3.19 Bivariate Kernel Density Plot ............................................................................................ 85
4.3.19.2 R Module ...................................................................................................................... 85
4.3.19.5 Voorbeeld ..................................................................................................................... 86
4.3.20 Bootstrap Plot (voor Central Tendency) ........................................................................... 87
4.3.20.2 R Module ...................................................................................................................... 87
4.3.20.5 Voorbeeld ..................................................................................................................... 91
4.3.21.5 Voorbeeld ..................................................................................................................... 91
4.3.22 Cronbach Alpha ............................................................................................................... 92
4.3.22.2 R Module ...................................................................................................................... 93
4.3.22.5 Voorbeeld ..................................................................................................................... 93
4.4 Kwantitatieve data met tijdsdimensie (tijdreeksen) ................................................................ 94
4.4.1 Equi-distante tijdreeksen .................................................................................................... 94
4.4.2 Tijdreeks Plot ..................................................................................................................... 94
4.4.2.2 R Module ........................................................................................................................ 95
4.4.3. Mean Plot ......................................................................................................................... 95
4.4.3.2. R Module ....................................................................................................................... 96
4.4.4 Blocked Bootstrap Plot (Central Tendency)........................................................................ 99
4.4.4.2 R Module ........................................................................................................................ 99
4.4.4.5 Voorbeeld ....................................................................................................................... 99
4.4.5 Standard Deviation-Mean Plot ........................................................................................... 99
4.4.5.5 Voorbeeld ..................................................................................................................... 100
4.4.6 Variantie reductie matrix .................................................................................................. 101
4.4.6.5 Voorbeeld ..................................................................................................................... 101
4.4.7 Partiële autocorrelatie functie ........................................................................................... 103
4.4.7.5 Voorbeeld ..................................................................................................................... 103
4.4.8 Periodogram .................................................................................................................... 106
4.4.8.5 Voorbeeld ..................................................................................................................... 107
HOOFDSTUK 5: HYPOTHESIS TESTING .................................................................................. 109
5.1.2.1 Grafiek van de normaalverdeling .................................................................................. 109
5.1.2.2 Interpretatie van standaarddeviatie ............................................................................... 109
5.2 Populatie............................................................................................................................. 110
5.9 Statistische test voor een populatiegemiddelde met een gekende variantie ........................ 110

,R Module .................................................................................................................................. 118
5.17 Toetsen van Hypothese voor onderzoek ........................................................................... 120
5.17.1 One Sample t-Test ......................................................................................................... 120
5.17.1.2 Analyse gebaseerd op kritieke waarden ...................................................................... 120
5.17.1.3 Analyse gebaseerd op p-waarden ............................................................................... 123
5.17.1.5 Alternatieven ............................................................................................................... 124
5.17.2 Skewness & Kurtosis tests ............................................................................................. 125
5.17.2.1.1 D’Agostino skewness test ........................................................................................ 125
5.17.5.1.2 Kurtosis test ............................................................................................................. 125
5.17.2.4 Alternatieven ............................................................................................................... 127
5.17.3 Gepaarde Two Sample t-Test ........................................................................................ 127
5.17.5 Unpaired Two Sample t-Test.......................................................................................... 129
5.17.5.1 Hypotheses - examples............................................................................................... 129
5.17.5.2 Analyse gebaseerd op p-waarden ............................................................................... 130
5.17.5.3 Assumpties ................................................................................................................. 132
5.17.5.4 Alternatieven ............................................................................................................... 132
15.7.6 Unpaired Two Sample Welch Test ................................................................................. 133
15.7.6.2 Analyse op basis van p-waarden ................................................................................ 133
5.17.7 Mann-Whitney U test ..................................................................................................... 133
5.17.7.1 Classical model ........................................................................................................... 134
5.17.7.1.2 Randomization model .............................................................................................. 134
5.17.7.2 Analyse op basis van p-waarden ................................................................................ 134
5.17.8 Bayesian Two Sample Test ........................................................................................... 135
5.17.9 Mediaan Test op basis van Notched Boxplots ................................................................ 135
5.17.10 Chi-kwadraat test for Count Data ................................................................................. 135
5.17.10.1 Pearson Chi-Kwadraat Test ...................................................................................... 135
5.17.10.1.4 Analyse gebaseerd op p-waarden – Output ........................................................... 136
5.17.10.1.5 Assumptie .............................................................................................................. 137
5.17.10.2 Exacte Pearson Chi-kwadraat Test met simulatie. .................................................... 137
5.17.11 One way analysis of Variance (1-way ANOVA) ............................................................ 138
5.17.11.2 Analyse gebaseerd op p-waarden ............................................................................. 138
5.17.12 Two Way Analysis of Variance (2-way ANOVA) ........................................................... 142
5.17.12.1 Analyse gebaseerd op p-waarden ............................................................................. 142

, 5.17.13 Testing Correlations ..................................................................................................... 147
5.17.14 Nota bij causaliteit ........................................................................................................ 147
HOOFDSTUK 6: Regressie modellen .......................................................................................... 149
6.1 Enkelvoudige lineair regressie model (Simple Lineair Regression Model: SLRM) ............... 149
6.1.2 Kleinste kwadratencriterium (Least Squares Criterion) ..................................................... 149
6.1.3 Ordinary Least Squares for Simple Linear Regression ..................................................... 150
6.1.4 Assumpties om regressiemodel op te stellen ................................................................... 151
6.1.5 Statistische eigenschappen van 𝛼 en 𝛽 ........................................................................... 151
6.1.5.2 Betrouwbaarheidsintervallen van eenvoudige lineaire regressieparameters ................. 153
6.2 Meervoudig lineair regressiemodel (Multiple Linear Regression Model: MLRM) ................. 154
6.2.1.3 Unbiasedness of b ........................................................................................................ 157
6.2.1.4 Minimum variantie (Gauss-Markov Theorema) ............................................................. 157
6.2.1.7 Determinatie coëfficiënt R² ............................................................................................ 158
6.2.1.8 Relatie tussen het SLRM en het MLRM ........................................................................ 158
6.2.2 Maximum Likelihood Estimation for Multiple Linear Regression ....................................... 159
Zelf regressiemodel maken met behulp van Excel en RFC ....................................................... 169
RFC: Multiple Regression (volledig uitgelegd) .......................................................................... 175
HOOFDSTUK 7: Introductie tot tijdreeksanalyse .......................................................................... 193
7.2 Case: the Market of Health and Personal Care Products .................................................... 193
7.3. Decompositie van tijdsreeksen .......................................................................................... 193
7.3.1. Klassieke decompositie van tijdsreeksen met “moving averages” ................................... 193
7.3.2 Seizoenale decompositie volgens Loess.......................................................................... 196
7.3.3. Decompositie volgens structurele tijdreeksmodellen. ...................................................... 197
7.4 Ad hoc forecasting van tijdreeksen ..................................................................................... 199
7.4.1 Regressieanalyse van tijdreeksen.................................................................................... 199
7.4.2 Smoothing Models ........................................................................................................... 203
7.4.2.4 Single Exponential Smoothing ...................................................................................... 203
7.4.2.5 Double Exponential Smoothing ..................................................................................... 204
7.4.2.6 Triple Exponential Smoothing (Holt-Winters model) ...................................................... 205
HOOFDSTUK 8: Univariate Box-Jenkins analyse ........................................................................ 211
8.2 Data .................................................................................................................................... 211
8.3 Theoretical Concepts .......................................................................................................... 212
8.3.0.1 Stationair Processes ..................................................................................................... 212
€17,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
nickdd Karel de Grote-Hogeschool
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
77
Lid sinds
7 jaar
Aantal volgers
48
Documenten
10
Laatst verkocht
2 weken geleden

4,5

8 beoordelingen

5
5
4
2
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen