100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Statistics II: Applied Quantitative Analysis Lecture and Seminar Notes (Week 1-6) - GRADE 8,5

Beoordeling
4,2
(5)
Verkocht
17
Pagina's
43
Geüpload op
06-02-2022
Geschreven in
2021/2022

Summary of the material for the final exam (2022) for Statistics II: Applied Quantitative Analysis. INCLUDES Q&A lectures, web lectures and seminar notes from week 1-6 (Total: 43 pages).











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
6 februari 2022
Bestand laatst geupdate op
15 juni 2022
Aantal pagina's
43
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Dr. joshua robinson
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Summary of the material for the final exam (2022) for Statistics II: Applied Quantitative Analysis.
INCLUDES Q&A lectures, web lectures and seminar notes from week 1-6 (Total: 43 pages).
1


Statistics II: Applied Quantitative Analysis Lecture and Seminar
Notes (Week 1-6)


Table of Contents

Week 1: Bivariate Linear Regression 2

Workgroup Session #1 7

Week 2: Multiple Linear Regression 8

Workgroup Session #2 15

Week 3: Moderation, Mediation, and Outliers/Influential Cases 17

Workgroup Session #3 23

Week 4: OLS Assumptions 26

Workgroup Session #4 31

Week 5: Logistic Regression 34

Workgroup Session #5 39

Week 6: Logistic Regression Model Assumptions 41

, 2


Week 1: Bivariate Linear Regression
Statistical Models
Correlation: A measure of the strength of the variables’ linear relationship towards one another.

Models = Abstractions.
➔ 𝑑𝑎𝑡𝑎 = 𝑚𝑜𝑑𝑒𝑙 + 𝑒𝑟𝑟𝑜𝑟
➔ Statistical Model: A theory of how the observed data was generated. It is used to:
◆ Make predictions inside our data or outside with new cases.
◆ Test claims about causal inference.
● Causal Inference: Using observed relationships in our data to try and infer
whether X causes Y (“using known facts”). Deals more with the nature of
data, than the nature of the model. The problem with causal inference is that
any given observation is counterfactual (i.e. we can only observe part of the
values).
● Causality: If everything else stayed the same, what would have happened if
the potential causes took on a different value? Summarise relationships.

Types of statistical models:
1. Ordinary Least Squares (OLS): Models continuous dependent variables, with a variety of
different independent variables.
2. Logit Models: Models binary (two) outcome variables.
3. Multinomial and Ordered/Ordinal Logit Models: Models categorical (multiple categories)
and ordinal dependent variables.

Each type of model enables us to:
● Predict the value of a dependent variable using multiple independent variables in a sample of
cases
● Make inferences from that sample to a broader population (given some assumptions).

Linear Regression
Two types of variables in models:
1. Dependent Variable (DV): The variable we want to predict/explain/understand (i.e. outcome
variable, Y).
2. Independent Variable (IV): The variable we are using to predict/explain the outcome (i.e.
predictor variable, X).
➔ With multiple additional variables (control, covariates) use: 𝑋1, 𝑋2... 𝑋𝑘; 𝑍.


Models are used to describe the data more efficiently and accurately.
➔ So, NOT all data will fall on the prediction line, as a result of fundamental randomness,
omitted variables, measurement error, etc..
➔ Variables within models (e.g. 𝑏1, 𝑏2...) can be called slope term, coefficients or parameters.
➔ Subscripts reference a particular observation in the data (e.g. 𝑏1 = the 1st observation).

, 3


Linear Regression Analysis: The simplest model; a straight line that represents the formula. It
describes the relationship between two variables, modelling the dependent variable as a function of
two terms (i.e. a series of predictions). Here:

● 𝑎 = Constant/intercept (average value of Y, when X = 0). 𝑦 = 𝑎 + 𝑏𝑥
● 𝑏 = Slope of the line (average change of Y given a one unit
change of X).

(Sample) Regression Equation: If various assumptions hold, this equation’s results can be used to
make inferences about the population of cases. Here:
● 𝑦 = Predicted variable (to only calculate this, exclude the residual from the equation).
● 𝑏0 = Constant/intercept; average expected value of Y when X=0 in our data.
● 𝑏1 = Slope of the line; average change in Y given a one-unit change in X in our data.
● ϵ𝑖 = Residual error (epsilon).


𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖 + ϵ𝑖

Residuals: The difference between what the model predicts and the observed value (i.e. prediction
errors). Here:

● ϵ𝑖 = Residual/prediction error (epsilon).
ϵ𝑖 = 𝑦𝑖 − 𝑦𝑖
● 𝑦𝑖 = Observed value for each observation.

● 𝑦𝑖 = Fitted/predicted value for each observation.



(Ordinary) Least Squares (OLS): The most prominent regression line that minimises the sum of
squared residuals/prediction errors (SSR).

𝑛 2
𝑆𝑆𝑅 = ∑ ϵ
𝑖=1
𝑛 2
= ∑ ⎡⎢𝑦𝑖 − 𝑦𝑖⎤⎥
𝑖=1 ⎣ ⎦
𝑛
[
= ∑ 𝑦𝑖 − 𝑏0 + 𝑏1
𝑖=1
( )]2
A line of best fit is chosen to reduce, as much as possible, the regression line’s prediction errors.

Interpreting Coefficients
Another form of the (sample) regression equation, where:
● 𝔼 = Expected value of Y when X takes a particular value.

Beoordelingen van geverifieerde kopers

Alle 5 reviews worden weergegeven
2 jaar geleden

2 jaar geleden

Hi Maria, thank you for the review. It’s a shame the notes were not to your liking. Was there anything that could be improved? Giacomo

3 jaar geleden

3 jaar geleden

3 jaar geleden

Thank you! I hope the exams go well!

3 jaar geleden

3 jaar geleden

Thank you! I hope the exams go well!

3 jaar geleden

3 jaar geleden

Thank you for the review! I hope the notes help!

4,2

5 beoordelingen

5
4
4
0
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
giacomoef Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
910
Lid sinds
4 jaar
Aantal volgers
285
Documenten
82
Laatst verkocht
5 uur geleden
Leiden University - IRO & CSM Notes

Creating concise notes and study guides for the following Leiden University programmes: - International Relations and Organisations (BSc) - Crisis and Security Management (MSc) [Cyber Security Governance] *All the money made (except the 40% that Stuvia keeps) will be donated to MSF’s (Doctors Without Borders) Palestine fund.*

4,6

133 beoordelingen

5
100
4
22
3
6
2
2
1
3

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen