100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary 4BBY1020- Chemistry for the Bioscience

Beoordeling
3,0
(1)
Verkocht
3
Pagina's
11
Geüpload op
31-01-2022
Geschreven in
2020/2021

Summary of the lectures from this module

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
31 januari 2022
Aantal pagina's
11
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

4BBY1020- Chemistry for the Biosciences
L1: Introductions to solutions chemistry and calculations
• mass = conc x vol • 1mg/mL = 1g/L
• mass = mol = mr • 1mg/L = 0.001g/L
• g/L = M x mr • 1µg/mL = 0.001mg/mL = 0.001g/L
• % (w/v) = g/100mL and % (v/v) = mL/100mL. e.g 60g/L = 6g/100mL = 6% (w/v).
• C1V1 = C2V2 is used for all dilutions. e.g 1 in 104 dilution means V2 = 104V.


L2: Atoms, compounds and chemical bonding
• When an electron jumps to a lower shell a photon is emitted, the higher the shell it goes to the
higher energy the photon has.
• Electrons are added to orbitals based on the Aufbau principle,
Pauli exclusion and Hund’s rule.
• 4 different types of orbitals, s, p, d and f. These can then be further
split into other types depending on their orientations against a
specific axis. 4s2 comes before 3d10.
• e.g N = 1s2 2s2 2p3
• The energy within each shell = principal quantum number (n) + orbital quantum number (l).
• Valency = number of bonds + formal charge. The highest occupied shell is the valence shell for
that atom. The number of free spaces within that shell is its valency. e.g for N valency = 3.

• Electronegativity (Δx) is a chemical property that describes the ability of
an atom to attract electrons towards itself. If Δx >1.7 = ionic bonding
and if Δx < 0.7 = covalent bonding.
• Covalent bonding: Two atoms come together and merge to form new
molecular orbitals. One forms a low energy bonding orbital and one
forms a high energy anti-bonding orbital. If there are electrons in the
anti-bonding orbital covalent bonds will not form. Easy to see with
Lewis structures.
• Lone pairs occupy non-bonding molecular orbitals. A dative covalent
bond is where both electrons within the covalent bond come from the
same atom.

• Two s orbitals will form a σ bond. Two p orbitals will form a π bond.
• π bonds help form conjugated systems, a system of atoms covalently bonded with alternating
single and multiple bonds in a molecule of an organic compound, resulting in delocalisation/
resonance, where a compound can be represented with more than one Lewis structure.
• Aromatic compounds consist of a conjugated ring of C-C bonds with resonance due to p
orbitals on adjacent carbon atoms overlapping. Any planar ring with (4n+2)π electrons is
aromatic e.g paracetamol, ibuprofen, tyrosine, phenylalanine, benzene etc.


L3: Molecular shape and forces: non-covalent interactions
• Molecular geometry is determined by bond length, bond angles and bond rotation.
• The bond lengths between atoms are normally based on the atomic radii of the atoms.
• Single bonds are longer and weaker than double or triple bonds.
• VESPR theory suggests that pairs of valence electrons repel each other, influencing geometry.

, • Hybridisation (4 domains = sp3 etc) where 5 = sp3d and 6 = sp3d2 including lone pairs.
• Dihedral angles ɸ (phi) and Ѱ (psi) describe the rotation about the N-C and C-C bonds in amino
acids. These help contribute to the twisting backbone of secondary structure.
• Molecular dipoles are formed when two atoms with a high difference in electronegativity form a
covalent bond. e.g in HF, an electron cloud will be partly negative at F and partly positive at H.
• Water molecules have a permanent dipole meaning it is a polar solvent. Even if bonds are polar
doesn’t mean the whole molecule is.
• London Dispersion forces happen between all molecules, causing an instantaneous dipole.
• Hydrogen bonds occur when an H is covalently bonded to an F, O or N.
• Ion-dipole interactions allow the solubility of NaCl in water.


L4: pH and buffering
• pH is a measure of [H+]. The acidity of a solution depends only on free hydrogen ions.
• Regulation of blood pH is critical (7.35-7.45). The living range is 7.0-7.8 otherwise acidosis or
alkalosis occurs.
• Most H+ is generated from breakdown of proteins, incomplete oxidation of fats or glucose and
the loading and transport of CO2 in the blood.

• Acid-base balance is regulated in the body by the lungs, kidneys and chemical buffers in the
blood.
• Buffers resist abrupt and large swings in the pH of body fluids by releasing H+ when pH begins
to rise and binding H+ when the pH drops.
pH = -log [H+], meaning when [H+] is 10-2 the pH is 2.
• At neutrality, [H ] = [OH-] so [H+] is 10-7 and pH is 7 as the ionic product of water is 10-4 M2.
+

• Blood pH is 7.4, meaning the [H+] is 3.98 x 10-8 M.

• Acids are proton donors and bases are proton acceptors.
• Acids that dissociate completely in solution are strong acids (HCl→H+ + Cl-) whereas those that
dissociate incompletely are weak acids (H2CO3→ H+ + HCO3-).
• Increasing the pH of a solution (e.g adding NaOH) then more of the weak acid will dissociate.
• The pH at which weak acid is half dissociated is known as the pKa. The weaker the acid, the
higher the pKa.
pKa = -log Ka, where Ka is the dissociation constant.
[A −] [con jugateba se]
pH = pKa + log = pKa + log
[H A] [acid ]
• Buffers are mixtures of weak acids and their conjugate bases. At pKa, buffering is optimal.
• Physiologically important buffers must be able to dissociate at physiological pH.
• In blood, saliva, other body fluids H2CO3→H+ + HCO3- (pKa 6.1) and H2PO4-→HPO42- (pKa 6.8).
• Proteins can also be used as buffers. e.g histidine has a pKa of 6.
• H2CO3 is proportional to the PCO2.
• Haemoglobin is a good buffer as it has a large number of histidine residues. The surroundings of
an acid group influence the pKa. Whilst free histidine has a pKa of 6, in oxyhemoglobin pKa is
6.8 and in deoxyhemoglobin pKa is 7.8.


L5: Carbon compounds and isomerisation
• Polarity of functional groups (more polar = higher boiling point):
amide > acid > alcohol > ketone ~ aldehyde > amide > ester > ether > alkane
-meth -eth -prop -but -pent -hex -hept -oct -non -dec
€8,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
1 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tiyadevinamistry La Côte International School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
15
Lid sinds
5 jaar
Aantal volgers
10
Documenten
29
Laatst verkocht
7 maanden geleden

4,0

2 beoordelingen

5
1
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen