100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

TEST BANK FOR Convex Optimization 1st Edition By Stephen Boyd (Solution Manual)

Beoordeling
-
Verkocht
-
Pagina's
303
Geüpload op
30-01-2022
Geschreven in
2021/2022

Exam (elaborations) TEST BANK FOR Convex Optimization 1st Edition By Stephen Boyd (Solution Manual) Convex Optimization Solutions Manual Stephen Boyd Lieven Vandenberghe January 4, 2006 Chapter 2 Convex sets Exercises Exercises De nition of convexity 2.1 Let C  Rn be a convex set, with x1; : : : ; xk 2 C, and let 1; : : : ; k 2 R satisfy i  0, 1 +    + k = 1. Show that 1x1 +    + kxk 2 C. (The de nition of convexity is that this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k. Solution. This is readily shown by induction from the de nition of convex set. We illustrate the idea for k = 3, leaving the general case to the reader. Suppose that x1; x2; x3 2 C, and 1 + 2 + 3 = 1 with 1; 2; 3  0. We will show that y = 1x1 + 2x2 + 3x3 2 C. At least one of the i is not equal to one; without loss of generality we can assume that 1 6= 1. Then we can write y = 1x1 + (1

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
30 januari 2022
Aantal pagina's
303
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Onbekend

Onderwerpen

Voorbeeld van de inhoud

,Convex Optimization

Solutions Manual




Stephen Boyd Lieven Vandenberghe




January 4, 2006

,Chapter 2

Convex sets

, Exercises


Exercises
Definition of convexity
2.1 Let C ⊆ Rn be a convex set, with x1 , . . . , xk ∈ C, and let θ1 , . . . , θk ∈ R satisfy θi ≥ 0,
θ1 + · · · + θk = 1. Show that θ1 x1 + · · · + θk xk ∈ C. (The definition of convexity is that
this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.
Solution. This is readily shown by induction from the definition of convex set. We illus-
trate the idea for k = 3, leaving the general case to the reader. Suppose that x 1 , x2 , x3 ∈ C,
and θ1 + θ2 + θ3 = 1 with θ1 , θ2 , θ3 ≥ 0. We will show that y = θ1 x1 + θ2 x2 + θ3 x3 ∈ C.
At least one of the θi is not equal to one; without loss of generality we can assume that
θ1 6= 1. Then we can write
y = θ1 x1 + (1 − θ1 )(µ2 x2 + µ3 x3 )
where µ2 = θ2 /(1 − θ1 ) and µ2 = θ3 /(1 − θ1 ). Note that µ2 , µ3 ≥ 0 and
θ2 + θ 3 1 − θ1
µ1 + µ 2 = = = 1.
1 − θ1 1 − θ1
Since C is convex and x2 , x3 ∈ C, we conclude that µ2 x2 + µ3 x3 ∈ C. Since this point
and x1 are in C, y ∈ C.
2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.
Solution. We prove the first part. The intersection of two convex sets is convex. There-
fore if S is a convex set, the intersection of S with a line is convex.
Conversely, suppose the intersection of S with any line is convex. Take any two distinct
points x1 and x2 ∈ S. The intersection of S with the line through x1 and x2 is convex.
Therefore convex combinations of x1 and x2 belong to the intersection, hence also to S.
2.3 Midpoint convexity. A set C is midpoint convex if whenever two points a, b are in C, the
average or midpoint (a + b)/2 is in C. Obviously a convex set is midpoint convex. It can
be proved that under mild conditions midpoint convexity implies convexity. As a simple
case, prove that if C is closed and midpoint convex, then C is convex.
Solution. We have to show that θx + (1 − θ)y ∈ C for all θ ∈ [0, 1] and x, y ∈ C. Let
θ(k) be the binary number of length k, i.e., a number of the form
θ(k) = c1 2−1 + c2 2−2 + · · · + ck 2−k
with ci ∈ {0, 1}, closest to θ. By midpoint convexity (applied k times, recursively),
θ(k) x + (1 − θ (k) )y ∈ C. Because C is closed,
lim (θ(k) x + (1 − θ (k) )y) = θx + (1 − θ)y ∈ C.
k→∞


2.4 Show that the convex hull of a set S is the intersection of all convex sets that contain S.
(The same method can be used to show that the conic, or affine, or linear hull of a set S
is the intersection of all conic sets, or affine sets, or subspaces that contain S.)
Solution. Let H be the convex hull of S and let D be the intersection of all convex sets
that contain S, i.e., \
D= {D | D convex, D ⊇ S}.
We will show that H = D by showing that H ⊆ D and D ⊆ H.
First we show that H ⊆ D. Suppose x ∈ H, i.e., x is a convex combination of some
points x1 , . . . , xn ∈ S. Now let D be any convex set such that D ⊇ S. Evidently, we have
x1 , . . . , xn ∈ D. Since D is convex, and x is a convex combination of x1 , . . . , xn , it follows
that x ∈ D. We have shown that for any convex set D that contains S, we have x ∈ D.
This means that x is in the intersection of all convex sets that contain S, i.e., x ∈ D.
Now let us show that D ⊆ H. Since H is convex (by definition) and contains S, we must
have H = D for some D in the construction of D, proving the claim.
€15,97
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Exceldemics
1,0
(1)

Maak kennis met de verkoper

Seller avatar
Exceldemics Harvard University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
3 jaar
Aantal volgers
4
Documenten
36
Laatst verkocht
1 jaar geleden
Exceldemics

On this page, you find all documents, bundles, and flashcards offered by Exceldemics.

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen