100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Grafentheorie (OAWI-H1GRAAF-12)

Beoordeling
-
Verkocht
4
Pagina's
9
Geüpload op
30-01-2022
Geschreven in
2020/2021

Samenvatting voor grafentheorie (behaald cijfer: 8,1)









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 januari 2022
Aantal pagina's
9
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

1755945 Josh Tukker



Grafentheorie
Hoofdstuk 1 – Inleiding en basisbegrippen
1.2 Basisbegrippen
• 𝑛 is het aantal punten, 𝑚 is het aantal lijnen.
• Een graaf is een diagram die bestaat uit punten die wel of niet verbonden worden door één of
meer lijnen.
§ Is de lijn voorzien van een richting? Dit is een gerichte graaf.
§ Is de lijn voorzien van een gewicht? Dit is een gewogen graaf.
• Twee verbonden punten zijn buren, twee verbonden lijnen heten buurlijnen.
§ Er is sprake van meervoudige lijnen als tussen twee punten meer dan één lijn loopt.
§ Een lus is een lijn van een punt naar zichzelf.
§ Een graaf zonder meervoudige lijnen en lussen is een enkelvoudige graaf.
§ Als van graaf 𝐺 enkele lijnen en/of punten worden weggelaten, dan ontstaat de deelgraaf
van 𝐺.
• De valentie van een punt geeft aan hoeveel lijnen er aan een punt vastzitten, waarbij een lus voor
twee telt.
§ Bij enkelvoudige grafen wordt ook het begrip lijnvalentie gebruikt. Dit geeft het aantal andere
lijnen aan die vastzitten aan die lijn.
§ Een geïsoleerd punt is een punt met valentie 0.
§ De valentie-rij is de niet-dalende rij van valenties van de punten van de graaf.
§ Een graaf 𝐺 is regelmatig van de orde 𝒌 als ieder punt van 𝐺 valentie 𝑘 heeft.
• Handenschud-lemma:
§ In elke graaf is de valentiesom gelijk aan 2𝑚.
• Een ongelabelde graaf is een graaf waarbij de punten geen naam hebben.
§ Als er voor de tekening van twee ongelabelde grafen een naamgeving te verzinnen is zo dat ze
dezelfde (gelabelde) graaf voorstellen, dan zijn beide ongelabelde grafen isomorf.
- Twee ongelabelde grafen 𝐺 en 𝐻 zijn isomorf als het mogelijk is de punten van 𝐺 en 𝐻 zo te
labelen dat gelijk gelabelde punten van 𝐺 en 𝐻 gelijke buren hebben.
• Een pad in een graaf is een rij opeenvolgende verschillende lijnen.
§ Een pad wordt genoteerd als een rij opeenvolgende lijnen.
§ Paden worden aangegeven met Griekse letters (α, β, γ, etc.).
§ Het eerste punt heet het beginpunt en het laatste punt heet het eindpunt.
- Als het beginpunt en eindpunt van een pad α samenvallen, heet het pad α een circuit.
o Een circuit van drie lijnen noem je een driehoek, een circuit van vier lijnen noem je een
vierhoek, etc.
• Een graaf heet een samenhangende graaf als er tussen elk tweetal verschillende punten van de
graaf een pad bestaat.
§ Een niet-samenhangende graaf bestaat uit een aantal componenten, die ieder afzonderlijk wel
samenhangend zijn, maar onderling niet verbonden zijn.



1.3 Verbindingsmatrices
• Een graaf kan numeriek worden weergegeven door middel van een verbindingsmatrix.
§ In een verbindingsmatrix geeft het getal 1 aan dat punten buren zijn.
§ Het aantal tweestap-, driestap-, vierstap-, etc-routes zijn te berekenen met behulp van de
matrixvermenigvuldiging.




1/9

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
joshtukker Hogeschool Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
49
Lid sinds
3 jaar
Aantal volgers
28
Documenten
12
Laatst verkocht
2 dagen geleden

4,3

3 beoordelingen

5
1
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen