1755945 Josh Tukker
Analyse vervolg
Hoofdstuk 4 – Integreren
4.5 De substitutiemethode
• Als 𝑔 een differentieerbare functie is met als beeld een interval 𝐼 waarop de functie 𝑓 continu is,
dan geldt:
∫ 𝑓(𝑔(𝑥)) ⋅ 𝑔′ (𝑥) 𝑑𝑥 = ∫ 𝑓(𝑢) 𝑑𝑢
waarbij het rechterlid het voorschrift is van een functie in 𝑥 door middel van de substitutie
𝑢 = 𝑔(𝑥).
• Stappenplan voor het primitiveren met de substitutiemethode:
1. Schrijf de functie op.
2. Bekijk of de functie makkelijker te primitiveren is met een substitutie.
3. Bekijk of er een goede substitutie mogelijk is. Kijk ook of je de afgeleide van je substitutie ziet.
4. Geef aan de rechterkant van het papier aan dat 𝑢 = 𝑔(𝑥).
5. Geef aan de rechterkant van het papier aan dat 𝑑𝑢 = 𝑔′ (𝑥) 𝑑𝑥.
6. Substitueer onder het integraalteken.
7. Bepaal de primitieve. Zet de integratieconstante erachter (+ 𝐶).
8. Druk de functie weer uit in 𝑥. Gebruik dat 𝑢 = 𝑔(𝑥).
• Als 𝑎 en 𝑏 reële getallen zijn, dan geldt voor de bepaalde integraal:
𝑏 𝑔(𝑏)
∫ 𝑓(𝑔(𝑥)) ⋅ 𝑔′ (𝑥) 𝑑𝑥 = ∫ 𝑓(𝑢) 𝑑𝑢
𝑎 𝑔(𝑎)
• Stappenplan voor het integreren met de substitutiemethode:
1. Schrijf de functie op.
2. Bekijk of de functie makkelijker te primitiveren is met een substitutie.
3. Bekijk of er een goede substitutie mogelijk is. Kijk ook of je de afgeleide van je substitutie ziet.
4. Geef aan de rechterkant van het papier aan dat 𝑢 = 𝑔(𝑥).
5. Geef aan de rechterkant van het papier aan dat 𝑑𝑢 = 𝑔′ (𝑥) 𝑑𝑥.
6. Bereken aan de rechterkant van het papier de nieuwe grenzen. Deze zijn 𝑔(𝑎) en 𝑔(𝑏).
7. Substitueer onder het integraalteken. Vervang ook de grenzen door 𝑔(𝑎) en 𝑔(𝑏)
8. Bepaal de integraal.
Analyse vervolg
Hoofdstuk 4 – Integreren
4.5 De substitutiemethode
• Als 𝑔 een differentieerbare functie is met als beeld een interval 𝐼 waarop de functie 𝑓 continu is,
dan geldt:
∫ 𝑓(𝑔(𝑥)) ⋅ 𝑔′ (𝑥) 𝑑𝑥 = ∫ 𝑓(𝑢) 𝑑𝑢
waarbij het rechterlid het voorschrift is van een functie in 𝑥 door middel van de substitutie
𝑢 = 𝑔(𝑥).
• Stappenplan voor het primitiveren met de substitutiemethode:
1. Schrijf de functie op.
2. Bekijk of de functie makkelijker te primitiveren is met een substitutie.
3. Bekijk of er een goede substitutie mogelijk is. Kijk ook of je de afgeleide van je substitutie ziet.
4. Geef aan de rechterkant van het papier aan dat 𝑢 = 𝑔(𝑥).
5. Geef aan de rechterkant van het papier aan dat 𝑑𝑢 = 𝑔′ (𝑥) 𝑑𝑥.
6. Substitueer onder het integraalteken.
7. Bepaal de primitieve. Zet de integratieconstante erachter (+ 𝐶).
8. Druk de functie weer uit in 𝑥. Gebruik dat 𝑢 = 𝑔(𝑥).
• Als 𝑎 en 𝑏 reële getallen zijn, dan geldt voor de bepaalde integraal:
𝑏 𝑔(𝑏)
∫ 𝑓(𝑔(𝑥)) ⋅ 𝑔′ (𝑥) 𝑑𝑥 = ∫ 𝑓(𝑢) 𝑑𝑢
𝑎 𝑔(𝑎)
• Stappenplan voor het integreren met de substitutiemethode:
1. Schrijf de functie op.
2. Bekijk of de functie makkelijker te primitiveren is met een substitutie.
3. Bekijk of er een goede substitutie mogelijk is. Kijk ook of je de afgeleide van je substitutie ziet.
4. Geef aan de rechterkant van het papier aan dat 𝑢 = 𝑔(𝑥).
5. Geef aan de rechterkant van het papier aan dat 𝑑𝑢 = 𝑔′ (𝑥) 𝑑𝑥.
6. Bereken aan de rechterkant van het papier de nieuwe grenzen. Deze zijn 𝑔(𝑎) en 𝑔(𝑏).
7. Substitueer onder het integraalteken. Vervang ook de grenzen door 𝑔(𝑎) en 𝑔(𝑏)
8. Bepaal de integraal.