100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary A level Differentiation Study Guide

Beoordeling
-
Verkocht
1
Pagina's
8
Geüpload op
26-01-2022
Geschreven in
2021/2022

Suitable for those studying A-level maths, I have created this study guide for those struggling to grasp the concept of differentiation. Included are clear diagrams and explanations, examples of questions being worked through, and practice questions (with solutions). The following topics are covered: First principles and proof Common derivatives Tangents, normals, maximum and minimum points Stationary points and points of inflection Product, quotient and chain rule Parametric differentiation Solutions to exercises are provided at the end of the pdf.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Study Level
Publisher
Subject
Course

Documentinformatie

Geüpload op
26 januari 2022
Aantal pagina's
8
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Differentiatio
n
Study Pack by Lucy
Barnes
The gradient (slope) of a function is
known as the ‘rate of change’. For B
example, the gradient can tell us how
quickly Y increases, as X increases.
We already know how to calculate the
gradient of a linear function (Example
1.1).


Example 1.1: Find the gradient of the
function (shown on the right). A

Solution:
Let point A = (0.25,0.5) and B =
(0.5,1)
change∈ y
Gradient =
change∈ x
(1−0.5)
=
(0.5−0.25)
0.5
=
0.25
=2

This method is perfect when working with linear functions, as shown above. What if the
function isn’t linear? Let’s see y=x 2+2x+1 as an example…

Since the graph is not linear, the gradient isn’t
P2 constant, it changes depending on where we look.
L1 For example, if we draw a tangent at (x=-2), this
will have a different slope than the tangent at
(x=-0.5).
So how can we work out the gradient of the
L2 The gradient of point P1 is the gradient of
the tangent, T at point P1. Let P1 = (-0.5,
P3 0.25).
1) Let’s take the point P1 and connect it to
another point, P2 = (0,1), with line L1. We
can find the gradient, m1, of this line, using
the same method in example 1.1, m1=1.5.
P1 2) Now let’s repeat this process, connecting P1
to an even closer point, P3 = (-0.293,0.5),
with line L2. Now we can find the new
gradient, m2=1.207 (3dp).
T
3) As we get closer and closer to P1, the lines
we draw become more accurate to the
actual tangent at P1. Therefore, to find the
gradient of the tangent at P1, we need to
get extremely close to the point, where the
distance between P1 and Pn is as small as
possible.
1

, yDon’t forget to show
your workings! f(x)
To find the gradient at point (x,f(x)), h
f(x+h) needs to be as small as possible.
We say, ‘h tends to 0’.
The gradient can be calculated as
follows:

change∈ y
Gradient = lim ¿h →0 ¿
change ∈ x
f ( x+ h )−f ( x )
=lim ¿h →0 ¿
( x +h )−x
f ( x+ h )−f (x )
f(x) = lim ¿h →0 ¿
h
This method is differentiation, and the
result is called the derivative.
x dy Δ y
(0,0) x x+h The notation used is f’(x) or / /
h dx Δ x


f ( x+ h )−f (x )
f’(x) = lim ¿h →0
h
¿



Example 1.2: Use the formula to find the derivative of the following:
f(x) = 3x2 + 2x + 4
Here, we can’t substitute h=0 into
Solution: the equation because it’s impossible
to divide by 0.
f ( x+ h )−f ( x )
f’(x)= lim ¿h →0 ¿ We need to substitute the function in
h and simplify as much as we can.
=lim ¿h →0
( 3 ( x+ h )2+ 2 ( x +h ) + 4 ) −( 3 x 2 +2 x+ 4)
¿
h Now we can make h=0 to find the
2
=lim ¿h →0
6 xh+3 h +2 h derivative.
¿
h
=lim ¿h →0 6 x +3 h+2 ¿

f’(x) = 6x + 2

You may hear this method be called “differentiating from first principles”.

Now, we can find the gradient of any point on f(x), just substitute in the corresponding x
value!
At the point (2,20), f’(x) = 6(2) +2
Try these yourself!
1. Prove the following derivatives:
a) f(x) = 4x3 – 2x + 9 -> f’(x) = 12x2 -2
b) f(x) = 5x -> f’(x) = 5
c) f(x) = 1 -> f’(x) = 0
d) f(x) = sinx -> f’(x) = cosx (HINT: USE THE TRIGONOMETRIC IDENTITIES)

Solutions are at the end of the pdf.


2
€7,56
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
barneslucy2001

Maak kennis met de verkoper

Seller avatar
barneslucy2001 De Montfort University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
3 jaar
Aantal volgers
1
Documenten
7
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen