100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary lectures Global Climate Change

Beoordeling
-
Verkocht
-
Pagina's
57
Geüpload op
24-01-2022
Geschreven in
2021/2022

Summary of lectures of course Global Climate Change 2021/2022












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
24 januari 2022
Aantal pagina's
57
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Isabel Vijver, Global Climate Change


2.1. Radiation Balance
2.1.1 Radiation
Planck function: relates the intensity of radiation from a
blackbody to its wavelength
> blackbody radiation curve

Wien’s Law: The flux of radiation emitted by a blackbody
reaches its peak value at a wavelength λmax, which depends
2898
inversely on the body’s absolute temperature: max 
𝑇
Sun: 5780 K → flux maximizes @ 500 nm
Earth surface: 288 K → flux maximizes @ 1000 nm

Radiation = waves of photons that release energy when absorbed
- The lower the wavelength, the more energy is carried by the photon
o High temperatures (sun), shortwave radiation → UV radiation
o Temperatures on earth higher but longwave radiation → infrared radiation
- More energy in shortwave radiation

Stefan-Bolzman equation:
All objects above 0 degrees Kelvin release radiation
- Emitted energy increases to the 4th power of its (blackbody) temperature
- Blackbody: all the radiation that is being absorbed is also being reemitted → E
(emissivity) = 1

4
E= εT

- ε Is emissivity, blackbody ε = 1
-  Is Stefan-Bolzman cste,  = 5.67*10-8




a. The Planck function is defining the distribution of the curve
b. The Wien function is defining the maximum radiation flux at a certain temperature


1

, Isabel Vijver, Global Climate Change


- The higher the temperature the lower the wavelength
c. The area below the curve defined by the Planck function is total energy that is being
emitted defined by Stephan Bolzman equation.



2.1.2. Radiation Balance

Shortwave radiation (yellow)

- Coming from the sun → high temperature →
high radiation with short wavelength (uv,
visible)
- Penetrates through space to outer edge of
atmosphere with no disturbance (solar constant)
- Penetrate through atmosphere → decreases due to absorption (20%) and reflection
(clouds)
o Reflection is depended on albedo: amount of shortwave radiation that is
reflected (snow = 0,8, asphalt = 0,04)
- Can reach ground as direct radiation and diffuse radiation

Longwave radiation (orange)

- Coming from land surface → low temperature → low radiation with long wavelength
(infrared)
- Longwave radiation is being absorbed and reemitted, while shortwave radiation is
being absorbed and reemitted as longwave radiation and reflected.
- Earth’s surface emits longwave radiation (infrared)
- Gases of atmosphere are good absorbers of longwave radiation → greenhouse gases:
o Different gases absorb different wavelength
- Troposphere has decreasing temperature at height → lower temperatures at upper part
atmosphere → less reemission

Energy balance

- More energy entering the surface than leaving the surface → does the surface gets
warmer and warmer and the atmosphere cooler and cooler?
o No, because there are two fluxes that makes sure that temperature in
atmosphere are well mixed: latent (80%) and sensible (20%) heat
o This mixture is influenced by the tropopause on top of troposphere: net
incoming radiation, outgoing longwave radiation → in balance → nothing
changing in the system. But an increase in GHGs will lead to even shortwave
going in but fewer longwave going out → system will heat up.




2

, Isabel Vijver, Global Climate Change


Latent heat: radiative energy is used to evaporate water rather than raising the surface
temperature. Water vapor condenses in the atmosphere which is causing the atmosphere to
heat up

Sensible heat: radiative energy used for rising warm air and sinking cold air.



2.1.3. Radiation factors

Amount of radiation depends on:

- Inverse square law (spuitbus):
- Radiation under an angle (different intensity)
- Earth's axis: seasons
- Distance to the sun
- Solar variability

2.2. Greenhouse effect

2.2.1. Physics of greenhouse effect
Energy emitted is defined by the Stephan-Bolzmann constant.
- Emissivity is 1 (assuming this is a blackbody)

In the atmosphere is a part absorbed (𝜀𝑎 ) and a part is transmitted (1 − 𝜀𝑎 ).

Emitted by atmosphere → Ta because what is being absorbed is reemitted
by atmosphere.
- In all directions, thus not only upward but also downward so these
equations are the same.

Total emission to stratosphere is: transmitted + emitted:
→ →

Because Ta < (always) Ts: reduces emission to space: greenhouse effect:
- Difference Ta and Ts
- Emissivity atmosphere (dependent on GHGs: the more GHGs → more emissivity →
more radiation left)

Green House Gases: H2O, CO2, CH4, O3




3

, Isabel Vijver, Global Climate Change


2.2.2. Radiative forcing
Radiative forcing (RF) is the difference between:
- Incoming solar radiation
- Outgoing longwave radiation
- Incoming longwave radiation from stratosphere
At the tropopause!

- Instantaneous Radiative Forcing:
Without temperature adjustment of the stratosphere
- (adjusted) Radiative Forcing:
Including temperature adjustment of the stratosphere > Makes the radiative forcing
smaller (because smaller longwave flux from stratosphere to troposphere)

2.3. Atmosphere in action
2.3.1. Radiation balance
- around equator: more incoming radiation than outgoing
- around poles: more outgoing radiation than outgoing
o are the poles cooling and equators heating up?
▪ No, because of atmospheric circulation


2.3.2. Vapor Pressure Gradient
- Latent heat rising and compensating in atmosphere → clouds and air
- Air is rising → moves to north and south
- Energy imbalance: energy transfer towards poles

Different forces:
- Pressure difference
- Earth rotation
- Friction

Result:
- Acceleration
- Deceleration
- Change of direction

Forces: pressure gradient:
o Air parcel forces
o Upward: air pressure
o Downward: gravity
o Horizontal: low/high pressure
o Pressure gradient force

Isobars:
- Lines of equal pressure
- Air moves from high to low pressure
- Speed depends on density
Stable gradients lead to extreme wind speeds? No, Coriolis effect




4
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
IsabelVijver

Maak kennis met de verkoper

Seller avatar
IsabelVijver Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen