100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Chapter10-Econometrics-DummyVariableModel

Beoordeling
-
Verkocht
-
Pagina's
8
Geüpload op
18-01-2022
Geschreven in
2021/2022

Introduction to basic Econometrics.It containing certain chapters. It give a detailed study of Econometrics. Chapter10-Econometrics-DummyVariableModel

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
18 januari 2022
Aantal pagina's
8
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Chapter 10
Dummy Variable Models


In general, the explanatory variables in any regression analysis are assumed to be quantitative in nature. For
example, the variables like temperature, distance, age etc. are quantitative in the sense that they are recorded
on a well-defined scale.


In many applications, the variables can not be defined on a well-defined scale, and they are qualitative in
nature.


For example, the variables like sex (male or female), colour (black, white), nationality, employment status
(employed, unemployed) are defined on a nominal scale. Such variables do not have any natural scale of
measurement. Such variables usually indicate the presence or absence of a “quality” or an attribute like
employed or unemployed, graduate or non-graduate, smokers or non- smokers, yes or no, acceptance or
rejection, so they are defined on a nominal scale. Such variables can be quantified by artificially constructing
the variables that take the values, e.g., 1 and 0 where “1” usually indicates the presence of attribute and “0”
usually indicates the absence of the attribute. For example, “1” indicator that the person is male and “0”
indicates that the person is female. Similarly, “1” may indicate that the person is employed and then “0”
indicates that the person is unemployed.


Such variables classify the data into mutually exclusive categories. These variables are called indicator
variable or dummy variables.


Usually, the indicator variables take on the values 0 and 1 to identify the mutually exclusive classes of the
explanatory variables. For example,
1 if person is male
D
0 if person is female,
1 if person is employed
D
0 if person is unemployed.


Here we use the notation D in place of X to denote the dummy variable. The choice of 1 and 0 to identify
a category is arbitrary. For example, one can also define the dummy variable in the above examples as


Econometrics | Chapter 10 | Dummy Variable Models | Shalabh, IIT Kanpur
1

, 1 if person is female
D
0 if person is male,
1 if person is unemployed
D
0 if person is employed.
It is also not necessary to choose only 1 and 0 to denote the category. In fact, any distinct value of D will
serve the purpose. The choices of 1 and 0 are preferred as they make the calculations simple, help in the easy
interpretation of the values and usually turn out to be a satisfactory choice.


In a given regression model, the qualitative and quantitative can also occur together, i.e., some variables are
qualitative, and others are quantitative.


When all explanatory variables are
- quantitative, then the model is called a regression model,
- qualitative, then the model is called an analysis of variance model and
- quantitative and qualitative both, then the model is called an analysis of covariance model.


Such models can be dealt with within the framework of regression analysis. The usual tools of regression
analysis can be used in the case of dummy variables.


Example:
Consider the following model with x1 as quantitative and D2 as an indicator variable

y   0  1 x1   2 D2   , E ( )  0, Var ( )   2
0 if an observation belongs to group A
D2  
1 if an observation belongs to group B.
The interpretation of the result is essential. We proceed as follows:
If D2  0, then

y   0  1 x1   2 .0  
  0  1 x1  
E ( y / D2  0)   0  1 x1

which is a straight line relationship with intercept  0 and slope 1 .




Econometrics | Chapter 10 | Dummy Variable Models | Shalabh, IIT Kanpur
2
€3,93
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
partwi085

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
partwi085 Mahatma Gandhi University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
1
Documenten
48
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen