100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Chapter 18 - sure models; econometrics

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
18-01-2022
Geschreven in
2021/2022

Introduction to basic Econometrics. It containing certain chapters. It give a detailed study of Econometrics. Chapter 18 - sure models . econometrics

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
18 januari 2022
Aantal pagina's
7
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Chapter 18
Seemingly Unrelated Regression Equations Models


A basic nature of the multiple regression model is that it describes the behaviour of a particular study
variable based on a set of explanatory variables. When the objective is to explain the whole system, there
may be more than one multiple regression equations. For example, in a set of individual linear multiple
regression equations, each equation may explain some economic phenomenon. One approach to handle such
a set of equations is to consider the set up of simultaneous equations model is which one or more of the
explanatory variables in one or more equations are itself the dependent (endogenous) variable associated
with another equation in the full system. On the other hand, suppose that none of the variables is the system
are simultaneously both explanatory and dependent in nature. There may still be interactions between the
individual equations if the random error components associated with at least some of the different equations
are correlated with each other. This means that the equations may be linked statistically, even though not
structurally – through the jointness of the distribution of the error terms and through the non-diagonal
covariance matrix. Such behaviour is reflected in the seemingly unrelated regression equations (SURE)
model in which the individual equations are in fact related to one another, even though superficially they
may not seem to be.


The basic philosophy of the SURE model is as follows. The jointness of the equations is explained by the
structure of the SURE model and the covariance matrix of the associated disturbances. Such jointness
introduces additional information which is over and above the information available when the individual
equations are considered separately. So it is desired to consider all the separate relationships collectively to
draw the statistical inferences about the model parameters.


Example:
Suppose a country has 20 states and the objective is to study the consumption pattern of the country. There is
one consumption equation for each state. So all together there are 20 equations which describe 20
consumption functions. It may also not necessary that the same variables are present in all the models.
Different equations may contain different variables. It may be noted that the consumption pattern of the
neighbouring states may have characteristics in common. Apparently, the equations may look distinct
individually but there may be some kind of relationship that may be existing among the equations. Such
equations can be used to examine the jointness of the distribution of disturbances. It seems reasonable to

Econometrics | Chapter 18 | SURE Models | Shalabh, IIT Kanpur
1

, assume that the error terms associated with the equations may be contemporaneously correlated. The
equations are apparently or “seemingly” unrelated regressions rather than independent relationships.


Model:
We consider here a model comprising of M multiple regression equations of the form
ki
yti   xtij  ij   ti , t  1, 2,..., T ; i  1, 2,..., M ; j  1, 2,..., ki
j 1


where yti is the t th observation on the i th dependent variable which is to be explained by the i th regression

equation, xtij is the t th observation on j th explanatory variable appearing in the i th equation, ij is the

coefficient associated with xtij at each observation and  ti is the t th value of the random error component

associated with i th equation of the model.


These M equations can be compactly expressed as
yi  X i i   i , i  1, 2,..., M

where yi is T 1 vector with elements yti ; X i is T  K i  matrix whose columns represent the T

observations on an explanatory variable in the i th equation;  i is a  ki 1 vector with elements  ij ; and  i

is a T  1 vector of disturbances. These M equations can be further expressed as

 y1   X1 0  0   1   1 
      
 y2  0 X2  0   2    2 
             
      
 yM   0 0  X M   M  M 
or y  X   

where the orders of y is TM 1 , X is TM  k * ,  is  k * 1 ,  is TM 1 and k *   ki .
i




Econometrics | Chapter 18 | SURE Models | Shalabh, IIT Kanpur
2
€4,79
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
partwi085

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
partwi085 Mahatma Gandhi University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
1
Documenten
48
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen