100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Applied Multivariate Data Analysis - Week 3

Beoordeling
4,0
(1)
Verkocht
11
Pagina's
64
Geüpload op
17-01-2022
Geschreven in
2021/2022

Summary of Field's chapter 12, 13 and 14












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapter 12, chapter 13, and chapter 14
Geüpload op
17 januari 2022
Aantal pagina's
64
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Week 3: General Linear Model



Ch 12: Comparing Several Independent Means


Using a Linear Model to Compare Several Means
Advantages of the linear model framework:

1) The linear model extends logically to the more complex situations – e.g., multiple
predictors, unequal group sizes
2) SPSS uses the linear model framework (i.e., the general linear model) for comparing
means

The general equation is used again => 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 = (𝑚𝑜𝑑𝑒𝑙) + 𝑒𝑟𝑟𝑜𝑟𝑖

1. ‘Model’ in the equation => replaced with one dummy variable that codes two groups
(i.e., 0 for one group, and 1 for the other)
- And an associated b-value => representing the difference between the group
means

Any number of groups can be included => by extending the number of dummy variables to
one less than the number of groups

- That one less group => i.e., the baseline category; assigned a 0 code on all
dummy variables

The baseline category => the condition against which the other groups are being compared

• In most experiments => this would be the control group
• In designs with unequal group sizes => important that the baseline category contains
a large number of cases
- Ensures that the estimates of b-values are reliable

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 = 𝑏0 + 𝑏1 𝑔𝑟𝑜𝑢𝑝1 + 𝑏2 𝑔𝑟𝑜𝑢𝑝2 + 𝜀𝑖

,Using a coding scheme => allows for each
group to be uniquely expressed by the
combined values for the dummy variables



When predicting an outcome from group membership => the predicted values from the model
are the group means

The colorized horizontal lines => represent the mean
outcome of each group

The shapes => represent the outcome of individual
participants (different shapes => different
experimental groups)

The red horizontal line => the average outcome of all
participants



The model for the control group – in which all dummies are coded 0 – becomes:

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 = 𝑏0 + (𝑏1 × 0) + (𝑏2 × 0)

Therefore, the bo in the model => always the mean of the baseline category

For someone in group 1 – the value of the dummy variable for group 1 will be coded 1 and the
value for group 2 will be coded 0 – becoming:

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 = 𝑏0 + (𝑏1 × 1) + (𝑏2 × 0)

This shows that the predicted outcome for someone in group 1 => the sum of bo and the b for
the dummy variable for group 1 (= b1)

Therefore, the mean of the control group = bo and the predicted outcome for someone in group
1 = the mean of that group

• We can replace bo and outcome with:
𝑋̅𝑔𝑟𝑜𝑢𝑝1 = 𝑋̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝑏1
𝑏1 = ̅𝑋𝑔𝑟𝑜𝑢𝑝1 − 𝑋̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙

, • Shows that the b-value for the dummy variable representing group 1 => is the difference
between the means of that group and the control

Similarly => for group 2 the equation becomes:

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 = 𝑏0 + (𝑏1 × 0) + (𝑏2 × 1)

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 = 𝑏0 + 𝑏2

By replacing the variables => we can see that the b-value for group 2 represents the difference
between the means for that group and the control:

𝑋̅𝑔𝑟𝑜𝑢𝑝2 = 𝑋̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝑏2
𝑏2 = ̅𝑋𝑔𝑟𝑜𝑢𝑝2 − 𝑋̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙



The output shows that the model fit was tested
with an F-statistic => which is significant

- The model represents the group means =>
this F tells us that using group means to
predict outcome scores is sig better than using
the mean of all scores
- i.e., the group means are sig different

The F-test is an overall test – and does not identify the differences between specific means

• The model parameters (b-values) do identify these differences
- The constant bo => the mean of the baseline group
- The b1 => the difference between the means of group 1 and the baseline group
- The b2 => the difference between the means of group 2 and the baseline group

Using the significance values of the associated t-tests => see that the difference between group
1 and control group (= b1) is significant at p = .008

- But the difference b/n group 2 and the control is not sig at p = .282



Logic of the F-Statistic

, The F-statistic => tests the overall fit of a linear model to a set of observed data

• It is the ratio of how good the model is – compared to how bad it is (error)

When the model is based on group means => the predictions from the model are those means

• If the group means are the same => ability to predict the observed data will be poor
(small F)
• If the means differ => able to better discriminate between cases from different groups
(large F)

In this context => F tells us whether the group means are significantly different

If the Ho: group means are equal => is true

- Then the b coefficients would all be 0 => because if the group means are equal
– then the difference between them will be 0

Mini Summary

• The model that represents ‘no effect’ or ‘no relationship b/n predictor variable and
outcome’ => one where the predicted value of the outcome is always the grand mean

- i.e., the mean of the outcome variable

• A different model can be fit to the data that represents the Ha

• The fit of the Ha model can be compared to the fit of the Ho model => i.e., using the
grand mean

• The intercept (bo) and one or more parameters (b) => describe the model

• The parameters determine the shape of the model fitted

- The bigger the coefficients => the greater the deviation b/n model and Ho model
(grand mean)

• In experimental research => the b parameters represent the differences b/n group means

- The bigger the differences b/n group means => the greater the difference b/n
model and the Ho model (grand mean)

• If the differences b/n group sizes are large enough => the resulting model will be a
better fit to the data than the Ho model (grand mean)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
3 jaar geleden

mistakes on page 9

3 jaar geleden

hi, I'm sorry to hear that, could you tell me which part was wrong? This way maybe others who have gotten the summary can also make sure to note it :)

3 jaar geleden

hey, I thought its a big thing but it's just something small: its about the interpretation of the F statistic, where it says F<1 means that MSR is greater than MSR

3 jaar geleden

ah, alright! thank you for letting me know :)

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
galinajimberry Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
352
Lid sinds
5 jaar
Aantal volgers
127
Documenten
8
Laatst verkocht
9 maanden geleden

4,3

16 beoordelingen

5
7
4
7
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen