100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Operations Management Formula Sheet

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
12-05-2015
Geschreven in
2014/2015

Complete overview of all formulas and quantitative information given in the course on Operations Management and Product Management










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 mei 2015
Aantal pagina's
6
Geschreven in
2014/2015
Type
Overig
Persoon
Onbekend

Voorbeeld van de inhoud

Meeting Topic Formulas

1 Competitor Wilcox - Perceptual Maps
Analysis 1-25 N products, M perceptual attributes → N*M questions
Stress = i<j(d(hat)i,j - di,j)2

2 Customer Appendix 6A: Economic Value to the Customer (p 71)
Analysis 26-73 Difference in total cost or EVC = TCa - TCn
Appendix 6B: Latent Class Methods
Norisus - Cluster Analysis
Squared Euclidean Distance




3 Product Appendix 9B: Assessing Discrimination and Preference (p 145)
Development and %AAe = %At + ¼ (% neither t)
Testing 113-146 %BBe = %Bt + ¼ (% neither t)
% neither e = ½ (% neither t)
where
%AAe = expressed percentage who choose A both times
%At = True percentage who prefer A
% neither t = True percentage of subjects who cannot tell the difference

4 Forecasting 74- Sales and Marketing Management buying power index =
112 Bass Diffusion 0,2* (% of population of area compared to US) + 0,3* (% of retail sales of area of US total) + 0,5* (% of
Model disposable income of area of US total) = % of product sold in various regions

Sales Extrapolation Methods
Moving Average e.g. St = (St-1 + St + St+1)/3
Exponential Smoothing St+1 = aSt + (1 - a)St
Regression analysis Sales = a + b(time)

Nonlinear relations
Logarithmic function Sales = b0 + b1 (log advertising)
Multiplicative model Sales = b0X1b1X2b2 ; coefficients interpreted as elasticity’s

Share forcasts Share brand i = exp(BXi) all brands exp(BXj)

Bass Model (forcasting really new products)
Pt = p + [q/M]Y(t-1)
where
Pt = Probability of purchase given no previous purchase
Y(t-1) = Total # who have purchased product through period t-1
M = The market potential (saturation level)
q = Parameter representing rate of diffusion of product
reflecting influence of others (coefficient of immitation)
p = Initial probability of purchase (coefficient of innovation)

Sales in period t
S(t) = [M - Y(t-1)] Pt
Substituing Pt from Bass into Sales
S(t) = pM + [q-p] Y(t-1) - q/M[Y(t-1)] 2

Regression of the model
Sales = c0+ c1Y(t-1)+c2[Y(t-1)] 2
c0 = pM
c1 = [q-p]
c2 = -q/M

Note on Bass Diffusion Model
St = Pt * UMt formula for # of people that’ll adopt product or service in a given month,year, etc.
Pt = Adoption probability in period t
UMt = untapped market

UMt = M - Yt -1
Pt = p + q * Yt -1

, M
M = total # of consumers in adopting target segment
Yt -1 = cumulative # of people that have already adopted
product/service
p = coefficient of innovation → intrinsic tendency to adopt
new product
q = coefficient of imitation

5 Strategic Efficiency = Actual output x100%
Capacity Planning Effective capacity
& Decision Trees
148-177 Utilization = Actual output x100%
Design capacity

Total cost = FC + VC Total Revenue = R x Q Variable cost = Q x v Total revenue = R x Q
Break-even point = Volume of output where :
Total cost = Total revenue
Profit = Q(R - v) - FC
Contribution margin = Revenue per unit - variable cost per unit
Required volume Q = P + FC to generate specified profit
R-v
Q_BEP = FC
R-v

5 Decision Theory Maximin = alternative with best of worst possible payoffs
178-199 Maximax = alternative with best possible payoff
Laplace = alternative with best average payoff of any of
the alternatives (equally likely)
Minimax regret = alternative that has the least of worst
regrets

Expected Monetary Value (EMV) = determine payoff of each alternative & choose alternative that has best expected
payoff
eg. 0.3(10$) + 0.5(10$) + 0.2(10$) = 10$ …...for all

Expected Value of Perfect Information (VPI) =
Expected payoff under certainty - Expected payoff under risk

Lecture p252-283 _

6 Location Center of Gravity Method
Planning & x_bar = (Sum of xi) / n
Transportation y_bar = Sum of yi) / n
284-312 xi = x coordinate of destination i
yi = y coordinate for destination i
n = Number of destinations

If # of units to be shipped not the same
→ Weighted avergae
x_bar = (Sum of xi*Qi) / (Sum of *Qi)
y_bar = Sum of yi*Qi) / (Sum of *Qi)
Qi = Quantity to be shipped to destination i


6 The _
Transportation
Model 313 - 318

7 Project Deterministic Time Estimates
Management 564- ES & EF involve forward pass EF=ES+t
615 LS &LF involve backward pass LS=LF-t
Slack time: Slack=LS-ES or LF-EF

Probabilistic Time Estimatesnm,.
te=average or expected time of an activity
to=optimistic time

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
6048502 Maastricht University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
72
Lid sinds
10 jaar
Aantal volgers
59
Documenten
1
Laatst verkocht
1 jaar geleden

3,9

10 beoordelingen

5
2
4
5
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen