100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Applied Multivariate Data Analysis - Week 2

Beoordeling
-
Verkocht
10
Pagina's
38
Geüpload op
13-01-2022
Geschreven in
2021/2022

summary of Field's chapter 9 and chapter 11












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapter 9 and chapter 11
Geüpload op
13 januari 2022
Aantal pagina's
38
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Applied Multivariate Data Analysis – Week 1,
Session 2


Ch 9: The Linear Model (Regression)


Introduction to the Linear Model (Regression)


The Linear Model with One Predictor


The fundamental idea is that – an outcome for a person can be predicted from a model and
some error associated with that prediction:

outcome i=( b 0 +b1 X i ) +error i

Y i=( b0 +b 1 X i ) + ε i

This model differs from that of a correlation => only in that it uses an unstandardized
measure of the relationship (b1 => the slope of the line/gradient)

- And includes a parameter (bo => the intercept; constant) => the value of the
outcome when the predictor is 0



The Linear Model with Several Predictors


Y i=( b0 +b 1 X 1 i b2 X 2 i )+ ε i

By estimating the b-values => can make predictions about the outcome based on both of the
predictor variables

Regression analysis – i.e., fitting a linear model to data and using it to predict values of an
outcome variable – from one or more predictor variables

͢ One predictor variable => simple regression

, ͢ Several predictors => multiple regression



Estimating the Model


The model can be described entirely by a constant (bo) and by parameters associated with
each predictor (bs)

The fit of the model can be estimated by looking at the deviations between the model and the
data collected

͢ The differences between the line (i.e., predicted values) and the observed data => the
residuals

If a model is a perfect fit for the data => then for a given value of the predictor(s), the model
will predict the same value of the outcome as was observed

- i.e., no residuals => no differences between the predicted values and observed
data

Computing the total error in a model => square the differences b/n observed values of
outcome and the predicted values from the model

2
total error=(observed i −modeli )

To assess the error in a linear model => use a sum of squared errors

- Referred to as the sum of squared residuals – or residual sum of squares ( SS R
)

The SS R => provides information about how well a linear model fits the data

͢ If SS R are large => model not representative of the data (i.e., lots of error in
prediction)
͢ If SS R are small => the line is representative

The method of ordinary least squares (OLS) => the method used to estimate the b
parameters that define the regression model for which the SSr is the minimum it can be
(given the data)

, Assessing the Goodness of Fit, Sum of Squares, R and R2


The goodness of fit – i.e., how well the model fits the observed data

The ss R => measures how much error there is in the model

- It quantifies the error in prediction
- It does not show whether using the model is better than nothing

So => compare the model against a baseline

- Check whether it improves how well one can predict the outcome
- Compare the ss R of the two models

If the model is good => it should have sig less error than the baseline model



Sum of Squares
Residual Sum of Squares ( ss R)

Represents the error in prediction (observed data vs
model)

2
ss R=(observed i−model i)

 Compare the model vs baseline model
 Calculate new model’s ss R
 If ss R is less in new model => less error, best

model

Total Sum of Squares ( ssT )

Represents the sum of squared differences b/n observed
values and values predicted by the mean

2
ssT =(observedi −Y model)

 Represents how good the mean is as a model of observed outcome values
 Observed data vs. Mean value of Y

, Model Sum of Squares ( ss M )

Represents the reduction of the inaccuracy of the model – resulting from fitting the regression
model to the data

2
ss M =( Y model i−model i )

¿ ssT −ss R

 Improvement in prediction resulting from using the linear model rather than the mean
 Large ss M => large improvement in prediction

 Small ss M => best model is no better than baseline

Explained Variance ( R2)

2
R => proportion of improvement due to the model

 Multiply by 100 => percentage value
 Represents the amount of variance in outcome – explained by the model (= SSM) –
relative to the total amount of variation there is to explain (= SS)
2 SS M
R=
SS

√ R2 => the correlation coefficient for the relationship between the values of outcome
predicted by model – and the observed values

 Estimate of the overall fit of the regression model

2
R => estimate of the substantive size of model fit

Mean Squares and F-Statistic

F => ratio of improvement due to the model (= SSM) and the error in the model (= SSR)

 It is a measure of how much a model has improved the prediction of the outcome –
compared to the level of inaccuracy in that model

systematic variance model
test statistic= =
unsystematic variance error ∈model

 The average sums of squares – i.e., the mean squares (MS) – are used to compute F

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
galinajimberry Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
352
Lid sinds
5 jaar
Aantal volgers
127
Documenten
8
Laatst verkocht
9 maanden geleden

4,3

16 beoordelingen

5
7
4
7
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen