100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Calculus 2 Notes (Integral Calculus)

Beoordeling
-
Verkocht
-
Pagina's
29
Geüpload op
02-01-2022
Geschreven in
2020/2021

I have summarized Chapters 5, 6, 7, 8, and 9, along with differential equation notes (labeled chapter 10 in my notes) spread out across the book. This is more rigorous than a standard course in integral calculus. I wasn't a fan of the calculus 2 offered at my school, so I followed the textbook of UBC's MATH 121 Honours Integral Calculus.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
5-9
Geüpload op
2 januari 2022
Aantal pagina's
29
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

5 Integration
5.1 Sums and Sigma Notation
De
nition 1 Sigma Notation
If m and n are integers with m ≤ n, and if f is a function de
ned at the integers m, m + 1, m +
2, ..., n, the symbol ni=m f (i) represents the sum of the values of f at those integers:
P

n
X
f (i) = f (m) + f (m + 1) + f (m + 2) + · · · + f (n).
i=m

The explicit sum appearing pn the right side of the equation is the expansion of the sum
represented in sigma notation on the left side.
Note i is the index of summation, use i = j + m for all i. The index of summation is a
dummy variable. The limits of summation: m is the lower limit, and n is the upper limit.
Theorem 5.1 Summation Formulas (Closed Form)
n
X
1 = 1 + 1 + 1 + · · · + 1 = n, (n terms)
i=1
n
X n(n + 1)
i = 1 + 2 + 3 + ··· + n =
i=1
2
n
X n(n + 1)(2n + 1)
i2 = 12 + 22 + 32 + · · · + n2 =
i=1
6
n
X rn − 1
ri−1 = 1 + r + r2 + r3 + · · · + rn−1 =
i=1
r−1

A sum of the form ni=m (f (i + 1) − f (i)) telescopes out to the closed form f (n + 1) − f (m)
P
because all but the
rst and last terms cancel out, this is called a telescoping sum.

5.2 Areas as Limits of Sums
The Basic Area Problem
Divide [a, b] into n subintervals:
a = x0 < x1 < x2 < · · · < xn = b.

Denote by ∆xi the length of the ith subinterval [xi−1 , xi ]:
∆xi = xi − xi−1 , (i = 1, 2, 3, ..., n).

Then build a rectangle with width ∆xi and height f (xi ). The sum of these areas is given by:
n
X
Sn = f (x1 )∆x1 + f (x2 )∆x2 + f (x3 )∆x3 + · · · + f (xn )∆xn = f (xi )∆xi .
i=1


1

, Thus, Area of R = limn→∞ Sn , where max ∆xi → 0.

For equal subinterval lengths,
b−a i
∆xi = ∆x = , xi = a + i∆x = a + (b − a).
n n

5.3 The De
nite Integral
Let P be a
nite set of point arranged in order from a to b on the real line, thus
P = {x0 , x1 , x2 , ..., xn },

is called a partition of [a, b].
n depends on the partition, so n = n(P ), with length ∆xi , (f or 1 ≤ i ≤ n), where the greatest
of these numbers is the norm of P , denoted:
kP k = max ∆xi .

De
nition 2 Upper and Lower Riemann Sums
The lower Riemann sum, L(f, P ), and the upper Riemann sum, U (f, P ), for the function
f and the partition P are de
ned by:
n
X
L(f, P ) = f (l1 )∆x1 + · · · + f (ln )∆xn = f (li )∆xi ,
i=1

n
X
U (f, P ) = f (u1 )∆x1 + · · · + f (un )∆xn = f (ui )∆xi .
i=1

De
nition 3 The De
nite Integral
Suppose there is exactly one number I such that for every partition P of [a, b] we have
L(f, P ) ≤ I ≤ U (f, P ).

Then we say that the function f is integrable on [a, b], and we call I the de
nite integral
of f on [a, b]. The de
nite integral is denoted by the symbol
Z b
I= f (x)dx.
a

The dummy variable of the de
nite integral is x.
For all partitions P of [a, b], we have
Z b
L(f, P ) ≤ f (x)dx ≤ U (f, P )
a

Given a partition P having kP k = max ∆xi , chose a point ci (called a tag ) in each subinterval
and let c = (c1 , c2 , ..., cn ) denote the set of these tags. The sum
n
X
R(f, P, c) = f (ci )∆xi = f (c1 )∆x1 + · · · + f (cn )∆xn
i=1


2

, is called the Riemann sum of f on [a, b] corresponding to partition P and tags c.
The limit of a Riemann sum is the de
nite integral, that is
Z b
lim R(f, P, c) = f (x)dx
n(P )→∞, kP k→0 a

Theorem 5.2 If f is continuous on [a, b], then f is integrable on [a, b].
It is su
cient that, for any given , we should be able to
nd a partition P of [a, b] for which
U (f, P ) − L(f, P ) < , this restricts there to be only one I .

5.4 Properties of the De
nite Integral
If a > b, we have ∆xi < 0 for each i, so the integral will be negative for positive functions f and
vise versa.
Theorem 5.3 Properties of the De
nite Integral
Let f and g be integrable on an interval containing the points a, b, and c. Then
(a) An integral over an interval of zero length is zero.
Z a
f (x)dx = 0.
a

(b) Reversing the limits of integration changes the sign of the integral.
Z a Z b
f (x)dx = − f (x)dx.
b a

(c) An integral depends linearly on the integrand. If A and B are constants, then
Z b Z b Z b
(Af (x) + Bg(x))dx = A f (x)dx + B g(x)dx.
a a a

(d) An integral depends additively on the interval of integration.
Z b Z c Z c
f (x)dx + f (x)dx = f (x)dx.
a b a

(e) If a ≤ b and f (x) ≤ g(x) for a ≤ x ≤ b, then
Z b Z b
f (x)dx ≤ g(x)dx.
a a

(f) The triangle inequality for sums extends to de
nite integrals. If a ≤ b, then
Z b Z b
f (x)dx ≤ |f (x)|dx.
a a

(g) The integral of an odd function over an interval symmetric about zero is zero. If f is an
odd function, then Z a
f (x)dx = 0.
−a


3
€11,04
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
TheQuantitativeNoteMan

Maak kennis met de verkoper

Seller avatar
TheQuantitativeNoteMan Simon Fraser University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
3 jaar
Aantal volgers
1
Documenten
8
Laatst verkocht
3 jaar geleden
Comprehensive Note Corner

I sell comprehensive and approachable study notes for quantitative subjects to students looking for a deep understanding and appreciation for the subject at hand. I believe that solving many, many problems is the number one method to mastering a subject. This can be achieved by having an accurate, concise, and organized set of notes to refer to. My notes provide a great alternative to flipping through a textbook while trying to work practice problems. That being said, none of my notes contain examples as those should be done by the student. My notes are great to review at least once a day. Note: My Chemistry notes, Pre-calculus notes, and calculus 1 notes are done in Microsoft Word, with the rest done in LaTeX (As of January 2nd 2022). Any further documents posted in 2022 or later years will be done strictly in LaTeX or pen and pencil. Thank you!

Lees meer Lees minder
0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen