100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Data Analytics & Professional Skills (Lectures Summary)

Beoordeling
-
Verkocht
-
Pagina's
46
Geüpload op
12-12-2021
Geschreven in
2021/2022

All summaries for data analytics & professional skills.













Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 december 2021
Bestand laatst geupdate op
28 december 2021
Aantal pagina's
46
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Data
Analytics &
Professional
Skills
Summary of the Lectures



Given in: 2021/2022 | Summary by LouisT

,Contents
Chapter 1. Introduction to Data Analytics ............................................................................................. 3
1.1 Course...................................................................................................................................... 3
1.2 Development .......................................................................................................................... 3
1.3 Managerial Decision Making .................................................................................................. 4
1.3.1 Decision-Making Process ................................................................................................ 4
1.4 Model ...................................................................................................................................... 5
1.4.1 Benefits of Models ................................................................................................................. 5
1.5 Data Vs Information ............................................................................................................... 7
1.6 Business Analytics ................................................................................................................... 8
1.7 Big Data ................................................................................................................................... 9
1.8 What is a Data Scientist? ........................................................................................................ 9
Chapter 2. Data Warehousing & Visual Analytics................................................................................ 11
2.1 What’s a Data Warehouse? .................................................................................................. 11
2.2 Why do we need databases?................................................................................................ 11
2.3 Databases vs Data Warehouse ............................................................................................. 11
2.4 Data Mart .............................................................................................................................. 12
2.5 Data Extraction, Transformation, and Load (ETL)................................................................ 12
2.6 OLTP VS OLAP ....................................................................................................................... 12
2.7 Data Lakes ............................................................................................................................. 14
2.8 Data Visualization ................................................................................................................. 14
Chapter 3. Database Concepts and Data Modelling ............................................................................ 15
3.1 Relational Database .............................................................................................................. 15
3.2 Data Modelling ..................................................................................................................... 15
3.3 Entity-Relationship Modelling .............................................................................................. 15
3.3.1 Cardinalities .................................................................................................................. 17
3.4 Developing E-R Diagrams ..................................................................................................... 21
3.5 Dealing with Big Data ........................................................................................................... 21
Chapter 4. Database Concepts and Data Modelling ............................................................................ 22
4.1 Design Requirement ............................................................................................................. 22
4.2 Implementing Relationships................................................................................................. 22
4.3 SQL Overview (Structured Query Language) ....................................................................... 24
Chapter 5. Data Mining ........................................................................................................................ 26
5.1 Data Mining Characteristics and Objectives ........................................................................ 26
5.2 A Taxonomy for Data Mining Tasks ..................................................................................... 27



A Summary by LouisT on Stuvia.nl | Thank you for your purchase | Version 2.0 (Final)

, 5.3 Data Mining and Statistics .................................................................................................... 27
5.4 Training and Testing Classification Methods ....................................................................... 29
5.5 Cluster Analysis ..................................................................................................................... 32
5.5.1 Why do we have Clustering? ........................................................................................ 32
Chapter 6. Process Mining .................................................................................................................... 34
6.1 System Documentation ........................................................................................................ 34
6.1.1 Why do we need System Documentation?.................................................................. 35
6.2 Process Mining (The Basics) ................................................................................................. 35
6.3 Process Mining (Terminology) .............................................................................................. 35
6.4 Process Mining (Input).......................................................................................................... 35
6.5 Process Mining (Algorithms) ................................................................................................ 36
6.6 Process Mining (Output)....................................................................................................... 37
Chapter 7. Text Mining ......................................................................................................................... 43
7.1 Data mining versus Text mining ........................................................................................... 43
7.2 Text Mining Tasks ................................................................................................................. 43
7.3 Natural Language Processing (NLP)...................................................................................... 44
7.4 Text Mining Process .............................................................................................................. 44
7.4.1 Step 1: Establish the Corpus (Collect data) .................................................................. 44
7.4.2 Step 2: Create the term-by-document Matrix (TDM) .................................................. 44
7.4.3 Step 3: Text Mining ....................................................................................................... 45




4

A Summary by LouisT on Stuvia.nl | Thank you for your purchase | Version 2.0 (Final)

,Chapter 1. Introduction to Data Analytics

1.1 Course
The course is split into two parts, which are Data Analytics and Professional Skills.

Data analytics will not be very theoretical, it will be more about applying the theory.

There will be two tutorials (DA) and three workshops (PS). These will be mandatory and if not
attending, an automatic fail for the exam. Workshops it is advised to install the program beforehand
as this is also important for the final exam. If you have any questions, the contact hours are 5-6 PM
on Wednesday and Thursday.

There will be an example exam before the final exam. The exam will consist of multiple-choice
questions and open questions.

Furthermore, group exercises will be given. You have to Conceptualize and describe a data analysis
solution for a specific type of company, and this must be a recorded group presentation. 3 minutes
for every group member.

Why do we need this course?
Big Data is causing information overload among decision-makers. In addition, someone must be able
to understand the data by using suitable techniques capable of dealing with Big Data via advanced
data analytics. The people with this understanding are currently very lacking in the accounting
profession.

1.2 Development
Many developments have been made in technologies that are affecting accounting. This is because
of BI, Warehouses, and audit firms that have started using data analytics. This means it makes a shift
from traditional accounting to new accounting.




Thanks to these technological innovations, it is possible to have cloud-based services which are very
accessible, from anywhere and saved digitally. The software also took over the majority of
transactions in bookkeeping activities.


3
A Summary by LouisT on Stuvia.nl | Thank you for your purchase | Version 2.0 (Final)

, 1.3 Managerial Decision Making
Decision-making is nearly the same as management as this is a process by which organizational goals
are achieved. Decision-making consists of selecting the best solution from two or more alternatives.
If the management wants to make the right decision, which I bet they do, they require sufficient
information.

1.3.1 Decision-Making Process
Normally four steps are taken to make a decision. These are Intelligence, design, choice, and
implementation. A quick explanation of these four steps:
1. Intelligence
First, we define the problem or opportunity, what or why do we need to make a decision
should be determined beforehand.
2. Design
After we understand why or what decision to make. We must construct a model that
describes the situation and find alternative solutions.
3. Choice
Here we compare, evaluate, and make the decision. Or we advise the manager what to do
and then the manager makes the decision.
4. Implementation
We implement the chosen solution.




4

A Summary by LouisT on Stuvia.nl | Thank you for your purchase | Version 2.0 (Final)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
louist Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
475
Lid sinds
8 jaar
Aantal volgers
370
Documenten
48
Laatst verkocht
1 week geleden
Samenvattingen voor HBO Finance & Control en Master Accountancy & Control

Welkom! Ik ben Louis. Ik heb Bedrijfseconomie (Nu: Finance and Control) gestudeerd en ben hierbij Cum Laude + Honours afgestudeerd aan de Hogeschool Windesheim. Hierna heb ik mijn studie vervolgt aan de UvA, namelijk pre-master en master Accountancy & Control. Hierbij heb ik ook Honours gedaan en dus beide trajecten. Ik probeer altijd duidelijk te maken wat in mijn samenvattingen zit, maar mocht je vragen hebben. Stuur mij dan een bericht. Dank alvast!

Lees meer Lees minder
4,0

55 beoordelingen

5
22
4
20
3
6
2
3
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen