100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Uitwerking Data Science In Auditing (DSA) Nyenrode 9+

Beoordeling
-
Verkocht
3
Pagina's
41
Geüpload op
08-12-2021
Geschreven in
2021/2022

Met deze paper heb ik een 9+ gehaald voor Data Science in Auditing. In het paper is onderzocht hoe de marktwaarde van occasions voorspeld kan worden middels een lineaire regressie. De code die geschreven moet worden is in de bijlage stapsgewijs opgenomen en met comments onderbouwd. Op de manier is inzichtelijk hoe de code samenhangt en wat elke regel doet voor de modellen.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
8 december 2021
Aantal pagina's
41
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Data-analyse: Wetenschap of
Magie?
Voorspellingen van de marktwaarde van occasions




__________________________________________________________________________________



Naam:
Mail:
Studentnummer:
Opleiding: Master Accountancy
Vak: Data Science in Auditing
Opdrachtorganisatie: Nyenrode Business Universiteit
Docent-begeleider:
Datum:
Woorden excl. bijlagen: 4918

Voor de volledigheid. Dit paper dient slechts als voorbeeld. Plagiaat is academisch wangedrag.

,Inhoud
1.1 Inleiding........................................................................................................................................3
1.2 Auditcontext.................................................................................................................................3
1.3 Relevantie binnen de audit...........................................................................................................4
2. Theorie...............................................................................................................................................5
2.1 Het beoogde model......................................................................................................................5
2.2 Gartner Analytic Ascendancy Model.............................................................................................5
2.2.1 Descriptive Analytics..............................................................................................................6
2.2.2 Diagnostic Analytics...............................................................................................................6
2.2.3 Predictive Analytics................................................................................................................6
2.2.4 Prescriptive Analytics.............................................................................................................6
2.3 Wisdom Pyramid..........................................................................................................................6
2.4 V’s van Bigdata.............................................................................................................................7
2.5 Push left-principe..........................................................................................................................8
2.6 Audit Comfort Cycle......................................................................................................................9
3. Praktijk en dataset............................................................................................................................10
3.1 Dataset.......................................................................................................................................10
3.2 Gehanteerde variabelen.............................................................................................................10
3.2.1 Opschoning Dataset.............................................................................................................10
3.2.2 Opsporing outliers...............................................................................................................12
3.3 Descriptive variabelen................................................................................................................12
3.3.1 Numerieke descriptives.......................................................................................................13
3.3.2 Categoriale descriptives.......................................................................................................15
3.4 Bias, variance en de trade-off.....................................................................................................19
3.5 Risico’s van het model................................................................................................................19
4. Onderzoeksresultaten......................................................................................................................21
4.1 Trainen........................................................................................................................................21
4.2 Testen.........................................................................................................................................22
4.3 Conclusie....................................................................................................................................24
Geciteerde werken...............................................................................................................................25
Bijlagen.................................................................................................................................................25
Bijlage 1. Instellen R..........................................................................................................................25
Bijlage 2. Dataset opschonen............................................................................................................25


1

,Bijlage 3. Beoordelen dataset...........................................................................................................28
Bijlage 4. Beschrijvende statistiek – finale dataset...........................................................................31
4.1 Code........................................................................................................................................31
4.2 Beschrijvende statistiek (Freq tabellen)..................................................................................33
Bijlage 5. Trainen van het model......................................................................................................36
5.1 Diagnostische plot: eerste model...........................................................................................36
5.2 Diagnostische plot: Aangepast model.....................................................................................36
5.3 Code........................................................................................................................................36
Bijlage 6. Testen van het model........................................................................................................39




2

, 1.1 Inleiding
Ooit wel eens afgevraagd hoe de verkoopprijs van een occasion tot stand komt? Waarschijnlijk niet.
Nu denk je waarschijnlijk: “Dat is toch logisch? Het merk, het model, de kilometerstand en het
bouwjaar spelen een grote rol”. Dat is zeker juist, maar dan resteert nog de vraag wat de invloed
daarvan is op de prijs. Oldtimers en de zogenaamde “classic”cars lijken bijvoorbeeld met de tijd
alleen maar meer waard te worden, terwijl de verwachting is dat deze in prijs zouden dalen, omdat
de kilometerstand en de leeftijd toeneemt. Dieselauto’s waren van oudsher waardevast, maar
ondertussen gaat ook die vlieger ook meer op, vanwege de introductie van de elektrische auto’s en
het weren van diesels in de binnensteden. Er zijn dus veel facetten die (onbewust) gemoeid zijn met
de hoogte van de verkoopprijs, waardoor het (onbewust) een complexe berekening wordt.

Vanuit het perspectief van de accountant bekeken is het zodoende een lastige puzzel om de
volledigheid van de opbrengstverantwoording van occasions te controleren. Veel meer dan een
goederenbeweging en een marge-analyse op basis van subjectieve inkoopprijzen, wordt er in de
praktijk niet gedaan aan gegevensgerichte werkzaamheden.

In dit paper proberen we derhalve te achterhalen of, voor de accountant, data-analyse een bruikbaar
stuk gereedschap is dat ingezet kan worden als werkzaamheid.

1.2 Auditcontext
De wens is om middels data-analyse een model op te zetten om de marktwaarde van occasions te
proberen te voorspellen op basis van de bij de Rijksdienst voor het Wegverkeer (RDW) bekende
gegevens. In dit paper wordt bij de definitie van de marktwaarde aangesloten op de gegeven
definitie in het Besluit Actuele Waarde en deze luidt: “Het bedrag waarvoor een actief kan worden
verhandeld tussen ter zake goed geïnformeerde partijen, die tot een transactie bereid en
onafhankelijk van elkaar zijn.”

De voorspelling vanuit het model kan afgezet worden tegen de werkelijke gehanteerde
verkoopprijzen om de volledigheid van de opbrengstverantwoording van occasions te beoordelen.
Overigens, indien er sprake is van een flatterende tendentie kan het model tevens gehanteerd
worden om de juistheid van de omzet te beoordelen.

Aanvullend is de wens om zo min mogelijk variabelen te hanteren in het model vanwege de
uitlegbaarheid naar de klant toe en de efficiency. Op basis van deze doelstellingen zijn de volgende
twee auditvragen geformuleerd:

“Is het mogelijk de marktprijs van een occasion te controleren op basis van gegevens zoals bekend bij
de RDW?”

&

“Is het mogelijk de marktprijs van een occasion te controleren op basis van alleen de
kilometerstand?”




3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
NoggeenRA Nyenrode Business Universiteit
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
265
Lid sinds
4 jaar
Aantal volgers
139
Documenten
36
Laatst verkocht
3 maanden geleden

4,1

22 beoordelingen

5
11
4
6
3
3
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen