100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

VU Master Health Sciences: Advanced Statistics - Summary lectures and literature: How to analyse clustered and longitudinal data and how to interpret the results?

Beoordeling
-
Verkocht
10
Pagina's
30
Geüpload op
03-12-2021
Geschreven in
2021/2022

All the practical information on clustered data and longitudinal data in a very compact version. How to apply the appropriate analysis step by step? How to interpret the results? - General information about Standard regression analysis (linear and logistic), Clustered data and Longitudinal data. Basic principles for both clustered and longitudinal data (linear and logistic), which are the Mixed model analysis (MMA), GEE-analysis, Growth curve analysis and Latent class growth models (LCGM).

Meer zien Lees minder













Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
1 t/m 9
Geüpload op
3 december 2021
Aantal pagina's
30
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Standard regression analysis (SRA)
Linear regression analysis
- Describes relationship by fitting line to observed data.
- Uses straight line (logistic/non-linear models use a curved line).
- Estimating how dependent variable changes as independent variable(s) change.


- Y = predicted value dependent for any given value of the independent variable
- B0 = intercept
Predicted value Y when X = 0
- B1 = regression coefficient
How much Y changes as X increases
Denotes magnitude of change in Y
- X = independent variable
- E = error of the estimate
The amount of variation in the estimate of the regression coefficient

OBTAINING REGRESSION LINE
- Least square means = finding best fit for data set points by minimizing the sum of residuals of
points from the plotted curve.

3 steps:
1. Square each residual
2. Sum all squared residuals
3. Minimize the total of the squared values

ASSUMPTIONS
1. Linear relationship between X and Y
2. Normal distribution residuals
3. Homoscedasticity residuals
4. Independent observations




- Independent-samples T-test = to compare means between 2 unrelated groups on the same
continuous Y.
- One-way ANOVA = to compare means between >3 unrelated groups on the same continuous Y.

LINEAR REGRESSION ANALYSIS OUTCOME

,Logistic regression analysis
- Describes relationship between binary Y and >1 other covariates (X).
- To fit a line between observations Y is transformed into the logarithm of the odds (ln(odds)).
- E-power of b1 = odds ratio (Exp(B)).


- Ln(odds of …) = the natural log of the odds of the outcome
- B0 = intercept
The natural log of the odds of the outcome when X = 0
- B1 = regression coefficient
How much ln(odds of …) changes when X changes with 1 unit
 taking the E-power of b1 gives the odds ratio (more easy to interpret)

LOGISTIC REGRESSION ANALYSIS OUTCOME




Confounding
- Confounding = a distortion that modifies an relationship between exposure and outcome, because
the factor is associated with both exposure and outcome.
- Re-assess b1 after adding the potential confounder (b2) into the model.
 compare crude b1 and adjusted b1 and calculate the percentage difference in the b1

Crude b1 Adjusted b1
Logistic -0.461 -0.388
Linear 2.149 2.212

Calculation logistic
-0.% = -0.00461
1% = -0.00461
-0.388 / -0.00461 = 84
100 – 84 = 16%  >10% there is confounding by
sex

Calculation linear
2.% = 0.02149
1% = 0.02149
2..02149 = 102.9
100 – 102.9 = -2.9%  <10% there is no confounding by sex

,Effect modification
- Effect modification = when magnitude of effect exposure (X) on Y differs between the level of the
third variable.
 exposure having different effects
- Assess p-value of interaction term (third variable).
- If significant, results of effect should be reported separately for the different subgroups.

,Basic principles linear mixed model
analysis
- Linear MMA extended version of linear regression analysis.
- Clustering is present when a set of objects group in such a way that objects in the same group (=
cluster) are more similar to each other than to those in other clusters.
- Observations within clusters are correlated with each other.
- You have to take this into account in your analysis with MMA.




Similar approach in regression models with clustering:
1. Intercept (u)
2. Slope (uk)
3. Intercept and slope (ukj)

General idea MMA – 3 steps
1. Estimate intercepts(/slopes) for different groups
2. Draw a normal distribution over the different intercepts(/slopes)
3. Estimate the variance of that normal distribution

Covariance between random slope & random
intercept
- Also known as the covariance (interaction) between the random slope and
random intercept.

1. Negative covariance
Indicates inverse relationship
For levels with relatively high intercept, a relatively low slope is observed
2. Positive covariance
Indicates same relationship
4. For levels with relatively high intercept, a relatively high slope is observed

Intraclass Correlation Coefficient (ICC) – ICC as
indicator
- ICC = indication average correlation of observations of subjects living in the same cluster.
- Indicates how strong units in the same group resemble each other (correlation).
- When calculating ICC with a model that includes an X variable, remaining variance is lower.
- Pure ICC calculated with intercept-only model (model without X).

,Variance used as explanation (specific application MMA)
- Using random effects for explanation differences.
- % of the difference in Y between the levels of the cluster is explained by X.
- Calculate with random intercept of the intercept-only model and the random intercept of the
model with X.

, Example linear MM
Explained with cross-sectional cohort study investigating the relationship between X (physical activity = PA)
and Y (health).
- Two-level structure
Subject = lowest level
Neighbourhood (NBH) = highest level
- Linear regression analysis should adjust for NBH by MMA.

1. Naïve linear MMA
- Without an adjustment for NBH




General information
- MMA without adjustment
- Log likelihood
- Number of observations
Fixed part
- Activity = b1, with standard error (S.E.), z-value, corresponding p-value and 95% CI estimated
around the b1.
Difference in health when there is 1 unit difference in PA
- _cons = intercept
Value of health when PA equals 0
Random part
- Var(Residual) = residual variance (the error variance/unexplained variance).
Because it’s a naïve model, random part only contains variance of the residual.

2. Add random intercept to the model
- Adding a random intercept on cluster level to the model.
- To adjust for NBH level.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Student1064 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
35
Lid sinds
4 jaar
Aantal volgers
21
Documenten
7
Laatst verkocht
1 maand geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen