100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Class notes and Summary of materials Data Science Research Methods (JBM)

Beoordeling
-
Verkocht
-
Pagina's
40
Geüpload op
24-11-2021
Geschreven in
2021/2022

This document contains notes on the lectures of Alessandro Di Bucchianico and Thomas Klein. And also a summary of the compulsory reading material for each lecture. This one is the large, detailed summary. It contains almost each detail mentioned during the lectures.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Parts of chapters 2,3,4,6, 9,10,11,16
Geüpload op
24 november 2021
Aantal pagina's
40
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Data Science Research Methods
JBM020

,Part 1: method that CAN with FIXED effects
19 april:
o Read: Sections 3.3.1. and 3.3.2. from experimental design
o Read: Chapter 2 from experimental design

3.3.1. p-Value

p-value: quantity of hypothesis testing . Represents the weight of
evidence against a null hypothesis.
In a graph, the p-value is the area to the right of the X value. We can thus
interpret is as the highest significance level for which we still accept H 0. If
α is pre-set, H 0 is rejected if the p-value is less than α , otherwise it is
accepted.

One-sided upper-tailed test: p-value is the area to the right of the test
statistic.
One-sided lower-tailed test: p-value is the area to the left of the test
statistic.
Two-sided test: p-value is double the area to the right or left (the smallest)
of the test statistic.

3.3.2. Type I and Type II Errors

Type I Error: the error of rejecting an H 0 when it is true.
Type II Error: the error or accepting an H 0 when it is false.

The significance level α =P∨(reject H 0∨H 0 true) is the probability that we
reject H 0 when it is true. This Type I error can be made smaller by
decreasing the value of α . However, than the Type II error becomes more
probable. It is a trade-off. The probability of an Type II error is
β=P( accept H 0 ∨H 0 false). Its value depends on the real value of μ. Therefore
is it different for each value of μ. As the separation between the mean
under H 0 and the assumed true mean under H 1 increases, β decreases.

The probability of correctly accepting an H 0 is 1−α and the probability of
correctly rejecting an H 0 is 1−β .

The optimal solution depends on the consequences of each type of error.
This makes it situation-specific.

,Chapter 2: One-Factor Designs and the Analysis
of Variance
2.1. One-Factor Designs

It studies the impact of a single factor on some performance measure.

Notation:
Y is the dependent variable.
X is the independent variable.
ε is a random error component, representing all other factors than X that
have an influence.
To show there is a functional relationship: Y =f ( X , ε ) .

Y ij → i is the value of Y for this person and j is the value of X .

Replicated experiment: it has more than one data value at each level
of the factor under study.
The number of rows, different values of Y , is the number of replicates. The
total number of experimental outcomes is the number of rows times the
number of columns.

2.1.1. The Statistical Model

An example is Y ij =μ+ τ j +ε ij with μ the mean and τ j the differential effect
associated with the j th level of X and ε ij the noise of error.

Those last three values need to be estimated.

2.1.2. Estimation of the Parameters of the Model
R
A column means is denoted as Y ∙ j=∑ Y ij / R .
i=1


Grand mean: the average of all RC data points, Y ∙ ∙ . It is the sum of all
values divided by RC ór the sum of all column means divided by C . If the
number of data points is not equal for each row, it can also be computed
as a weighted average of the columns means.

As criterion for those mean estimates, there is least squares: the optimal
estimation is the estimate that minimizes the sum of the squared
differences between the actual values and the “predicted values”. This
estimate is often labelled as e . It used T j as an estimate for τ j (using Y ∙ j−Y ∙ ∙
) and M as an estimate for μ (using Y ∙ ∙).

2 2
e ij =( Y ij −M −T j ) ∧∑∑ ( e ij ) =∑ ∑ ( Y ij −M −T j )

The ∑ ∑ is a summation over all R and again over all C , order does not
matter.

, From derivation the estimates, we get e ij =Y ij −Y ∙∙ .

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
datasciencestudent Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
39
Lid sinds
5 jaar
Aantal volgers
31
Documenten
15
Laatst verkocht
8 maanden geleden

3,5

2 beoordelingen

5
1
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen