100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Complete Summary of the course "Intelligent Agents"

Beoordeling
-
Verkocht
1
Pagina's
40
Geüpload op
05-11-2021
Geschreven in
2021/2022

This is a complete summary of all the topics covered in the course "Intelligent Agents" in block 1 of the first year of the Master in Artificial Intelligence at Utrecht University. The topics covered are the following: - Agent architectures - Ontology description logics - Description logics reasoning - Resource description framework and web ontology language - Agents for privacy - Agents for collaborative privacy - Trust in agents and the beta reputation system - Referral systems - Agent communication - Commitmnet concession - Dynamically generated commitment protocols

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapter 1 and 3
Geüpload op
5 november 2021
Aantal pagina's
40
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Intelligent Agents – Block 1 – Semester 1 – Fall 2021

Lecture 1 – Agent Architectures

• Agent:
o Anything that can be viewed as perceiving its environment through sensors and acting upon
that environment through actuators (Russel and Norvig)
o A persistent computation that can perceive, reason, act and communicate (Singh and
Huhns) → long term, always learning
o Sensors: eyes, cameras, sensors
o Actuators: legs, motors, messaging devices
• Agent vs. Object:
o In communication:
▪ Request agents to perform an action
▪ Agents have a two-way communication: request → response
▪ Call methods of objects
▪ Objects only have one-way communication
o In reasoning:
▪ Agents reason based on the state of the world and perform actions
▪ Objects always do what they are told
o In adapting:
▪ Agents can learn to act differently in different circumstances and environment
▪ Objects do not change their behaviour over time
• Features of agents:
o Autonomous
▪ Freedom to act independently
▪ Choose its own actions
▪ Decide on other agents that it will interact with or to trust
▪ Generally autonomous in choosing the extent of its actions
o Heterogeneous
▪ Could be designed and implemented by different parties
▪ No need to expose internal properties
▪ Might have to comply with some common requirements
o Self-interested
▪ Represent principals (users, businesses), which may have contradicting
preferences, commitments, or goals
▪ Agent is responsible for promoting the interest of its principals

,• Generic agent architecture:
o Environment can be in one of the following states:
▪ S = {s0, s1, ..., sN}
▪ Indicated by the conditions and context of the environment where the agent is in
o The agent can do one of the given actions:
▪ A = {a0, a1, ..., aN}
▪ E.g., beeping, displaying, no-op, waiting etc.
o Deterministic behaviour: Takes a sequence of states and determines the action to take
▪ E.g., from State1 can only go to State2
o The actions can be non-deterministic:
▪ E.g., from State1 can go to State2 but also to State3
• Rational agents:
o Always aims to perform optimal actions based on given premises and information
o Premises: what the agent perceived so far and what the agent already knows about the
environment
o Ideally: for each possible percept sequence, it acts to maximize its expected utility, based
on its knowledge and the evidence from the percept sequence
• Reflex agents:
o Act only based on the current percept, ignoring the rest of the percept history
o Agent function is based on the condition-action rule:
▪ "if condition, then action"
▪ This only succeeds when the environment is fully observable; infinite loops are
often unavoidable in partially observable environments
▪ E.g., thermostat: “if temperature < 15 degrees, then turn heating on”




• Model-based reflex agents:
o How the world evolves is a model of the world
o Remember the past through internal state

, o Has an internal model of "how the world works and looks like" holding information of the
unobserved aspects of a given state which depends on the percept history
o Percept history and impact of action on the environment can be determined by using the
internal model




• Goal-based agents:
o Identify (goal) state(s) where the goal holds
o Perform actions that will take the agent to a goal (desirable) state
o States and goals should be compatible
o Only distinguishes between goal states and non-goal states
o If a sequence of actions is necessary, plan
▪ E.g., goal is to obtain a MS degree, then study, pass exams and receive credits




o Goal types:
▪ Perform: related to an action
▪ Achieve: satisfy a desired condition
▪ Maintain: continue to establish a condition
▪ Query: obtain piece of information

, o Goal operations:
▪ Adopt: based on intentions
▪ Activate: start working on it (e.g., executing plans)
▪ Suspend: delay (e.g., another goal has a priority)
▪ Drop: remove the goal list all together (e.g., not important anymore or not
attainable)
• Utility-based agents:
o Idea is to define a measure of how desirable a particular state is (no notion of a goal here):
▪ This measure can be obtained using a utility function which maps a state to a
measure of the utility of the state
▪ Term utility can be used to describe how "happy" the agent is
o It enables comparison between states even when none are perfect or more than one good
state exists
o It chooses the action that maximizes the expected utility of the action outcomes (i.e., what
the agent expects to derive given the probabilities and utilities of each outcome)
o It must model and keep track of its environment
• BDI agents:
o Beliefs:
▪ Agent’s beliefs about the world (including itself and other agents)
▪ Can include inference rules, allowing forward chaining to lead to new beliefs
▪ What an agent believes may not necessarily be true (and in fact may change in the
future)
▪ Revising beliefs:
• Why? Agent may perceive information that contradicts old belief
• E.g., current belief: course ends at 15:00; talk to a friend who says it ends
at 15:15
• How?
o New belief overrides old belief
o Keep both old and new belief but handle inconsistency
o Assign probabilities
o Desires:
▪ The set of states that the agent would like to be in (may be inconsistent), the
motivational state of the agent
▪ Represent objectives or situations that the agent would like to accomplish or bring
about
▪ E.g., find best price, go to party, become rich

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
massimilianogarzoni Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
18
Lid sinds
8 jaar
Aantal volgers
13
Documenten
17
Laatst verkocht
5 maanden geleden

2,7

3 beoordelingen

5
0
4
0
3
2
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen