100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Mathematics 1 (2DD40) Summary Q1 2021

Beoordeling
5,0
(1)
Verkocht
3
Pagina's
13
Geüpload op
26-10-2021
Geschreven in
2021/2022

EN: Mathematics 1 (2DD40) is a course taught at Eindhoven University of Technology. It is a mandatory course for Bachelor Industrial Engineering students. The course is given in the first quartile of the first year. Mathematics 1 discusses the basics of logic, sets, linear algebra, series and probability. ---- NL: Wiskunde 1 (2DD40) is een vak die wordt gegeven op de Technische Universiteit Eindhoven. Het is een verplicht vak voor Bachelor Industrial Engineering studenten. Het vak wordt gegeven in het eerste kwartiel van het eerste jaar. Wiskunde 1 bespreekt de beginselen van logica, sets, lineaire algebra, series en waarschijnlijkheid.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
26 oktober 2021
Aantal pagina's
13
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Mathematics 1 (2DD40) Summary Q1
2021
Contents
Part I: Logic........................................................................................................................... 2
Part II: Sets ........................................................................................................................... 4
Part III: Linear algebra........................................................................................................... 6
Part IV: Series ....................................................................................................................... 9
Part V: Probability ............................................................................................................... 12




1
Mathematics 1 (2DD40) Summary Q1 2021 by Isabel Rutten

,Part I: Logic
There are different types of logic, we treat the main types proposition and predicate.
Proposition: statement which is either “true” or “false”
Basic statement: smallest unit that is true/false e.g. John sleeps
Composite statement: statements connected by and/or/not e.g. John sleeps and John does
not study. i.e. 𝑝: “John sleeps”. 𝑞: “John studies”. 𝑝 ∧ 𝑞: “John sleeps and John studies”
A proposition can have 2 truth values: False (also 0, F) and True (also 1, T).
Logical operators (also called connectives): ¬ not (negation), ∧ and (conjunction), ∨
inclusive or (disjunction), → implies (implication, from something false everything follows/the
truth follows from everything, (𝑝 → 𝑞) ↔ (¬𝑝 ∨ 𝑞) and (𝑝 → 𝑞) ↔ (¬𝑞 → ¬𝑝)), ↔ is
equivalent to (bi-implication, iff=if and only if, same as ← and → together). All are binary
except ¬ is unary. The priority of these signs is from first to last (¬ is strongest).
Truth table has left all possible values of the composing propositions and right the value of
the composite proposition, options increase exponentially with the number of propositions.
Tautology: (composite) statement that is true for all possible truth values of the variables
Equivalent: 2 statements are that if their truth columns in the truth table are equal
De Morgan: Negation of ∧ and ∨: ¬(𝑝 ∧ 𝑞) ↔ (¬𝑝 ∨ ¬𝑞) and ¬(𝑝 ∨ 𝑞) ↔ (¬𝑝 ∧ ¬𝑞).
Negation of →: ¬(𝑝 → 𝑞) ↔ (𝑝 ∧ ¬𝑞). Double negation cancels itself: ¬¬𝑝 ↔ 𝑝.
Every connective can be written with ∧, ∨ and ¬.




Fig. 1: Replacement rules Fig. 2: Step-by-step plan CNF and DNF
Every proposition can be written in Conjunctive Normal Form (CNF): of the form
(… ) ∧ … ∧ (… ) where between the brackets only ¬ and ∨ may appear.
Every proposition can be written in Disjunctive Normal Form (DNF): of the form
(… ) ∨ … ∨ (… ) where between the brackets only ¬ and ∧ may appear.
Incorrect reasonings: Do not make incorrect assumptions. An example does not suffice as
a proof. Correlation ≠ causation.
Paradox: 1 or more statements that lead to a contradiction.




2
Mathematics 1 (2DD40) Summary Q1 2021 by Isabel Rutten

, Predicate: quality / property, predicate logic is an extension of proposition logic with
variables (𝑥, 𝑦), predicates (descr. properties/relations), quantifiers, functions and constants.
Quantifiers: ∀ for all, universal quantifier; ∃ there exists, existential quantifier.
A quantifier binds a free variable, then it becomes a proposition, and is true or false.
Also: ∃! there exists exactly one.
Multiple quantifiers: e.g. ∀𝑥 ∃𝑦: 𝑦 < 𝑥 is true. Cannot interchange ∀ and ∃ without changing
the meaning of the statement, but multiple ∀’s or multiple ∃’s may be changed.
Negation of quantifiers:
∀𝑥: 𝜙(𝑥) where 𝜙(𝑥) is a certain property. Negation ¬(∀𝑥: 𝜙(𝑥)) means ∃𝑥: ¬𝜙(𝑥).
∃𝑥: 𝜙(𝑥) where 𝜙(𝑥) is a certain property. Negation ¬(∃𝑥: 𝜙(𝑥)) means ∀𝑥: ¬𝜙(𝑥).
To show that something does not hold for all x, 1 counterexample suffices. To show that
something is true, one needs a proof.
We can translate English sentences to the language of (predicate) logic like with 𝑀(𝑥, 𝑦): 𝑥 is
mother of 𝑦. E.g. ∀𝑦 ∃𝑥: 𝑀(𝑥, 𝑦) means everybody has a mother.
Quantifiers with extra condition: ∃𝑥 ∶ (𝑥 > 0) → ⋯ is the same as ∃𝑥 > 0 ∶ …
From something false everything follows.
Definition: agreement to give a certain name to something.
Theorem: (important) true statement/result
Corollary: theorem that (often quickly) follows from another.
Lemma: auxiliary theorem (preparation of more important result)
Proposition: theorem, but not very important
Conjecture: statement of which we suspect (but are not certain) that it is true
Defining a variable: : =, ≡
Hypothesis: statement that is preliminary assumed (assumption)
Proof techniques:
- Direct proof: based on the assumptions, results shown previously, etc.
- Counterexample: shows that statement cannot be proven / is false
- Proof with contraposition: instead of (𝐴) ⇒ (𝐵) we show ¬(𝐵) ⇒ ¬(𝐴)
- Proof of (𝐴) ↔ (𝐵) statement: show 2 parts: (𝐴) ⇒ (𝐵) and (𝐵) ⇒ (𝐴)
- Proof by contradiction: prove ¬(𝐴) by deriving a contradiction from (𝐴)




3
Mathematics 1 (2DD40) Summary Q1 2021 by Isabel Rutten

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
1 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
IsabelRutten Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
97
Lid sinds
5 jaar
Aantal volgers
66
Documenten
21
Laatst verkocht
2 maanden geleden
Summaries for Computer Science, Industrial Engineering, and ICT in Business

If you have any questions about the summaries or other study-related topics, you can always send me a message on this platform. For a cheaper price, you can also message me privately: I only receive 40% of the price you pay on this platform. I hope that these summaries help you advance your studies!

4,4

12 beoordelingen

5
9
4
1
3
1
2
0
1
1

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen