100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Graph Theory

Beoordeling
-
Verkocht
-
Pagina's
8
Geüpload op
23-10-2021
Geschreven in
2018/2019

Samenvatting van het vak Graph Theory, gegeven aan de Universiteit van Maastricht. Contains at least the following topics: graphs cliques tours paths flows walks map graphs










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 oktober 2021
Aantal pagina's
8
Geschreven in
2018/2019
Type
Samenvatting

Voorbeeld van de inhoud

Graph Theory Matús Mihalák




General graphs
A graph G has vertices V and edges E, notation: G = (V, E).
• ∑𝑣∈𝑉 𝑑(𝑣) = 2|𝐸| (sum of all degrees of vertices is equal to twice the number of edges)
• 𝛿(𝐺): minimum degree of G → vertex with the minimum degree (𝛿(𝐺) ≤ 𝑛 − 1)
• ∆(𝐺): maximum degree of G → vertex with the maximum degree
∑𝑣∈𝑉 𝑑(𝑣)
• 𝑑(𝐺): average degree of G ( )
|𝑉|
• Isomorphism: graphs that have the same number of vertices and edges and the same
edge connectivity (same vertices must be connected to each other).
Both graphs should have:
- Same |V| and |E|
- Same degree at every edge
- Same length of cycles
• Complete graph: every vertex is connected to every other vertex.
• Simple graph: unweighted, undirected graph containing no loops or multiple edges.

Vertices
• Number of vertices = |V| = n.
• Degree of a vertex = d(v).
• Vertices u and v are adjacent (neighbours) if there exists an edge with vertices u and v
and endpoints in E ( {𝑢, 𝑣} ∈ 𝐸 ).
• For an edge e= {u, v}, u and v are endpoints or end-vertices of edge e.
• Neighbourhood of a vertex v in a graph G= (V, E) is a set of all vertices that are connected
by edges to vertex v: 𝑁𝐺 (𝑣) = {𝑢|𝑢 ∈ 𝑉 ∧ {𝑢, 𝑣} ∈ 𝐸}
• A vertex with degree 1 is a leaf (especially makes sense in a tree).

Edges
• Number of edges = |E| = m.
• Edge e is incident to vertex v if there exists an edge e in E that has v as an endpoint.

A clique is a subset of vertices such that every vertex is connected to every other vertex in the
clique, meaning the subgraph (clique) is complete.
𝑉 ′ ⊆ 𝑉 such that ∀ 𝑢, 𝑣 ∈ 𝑉 ′ : {𝑢, 𝑣} ∈ 𝐸


Tours
Path: a set of vertices and a set of edges that connect every vertex to the next vertex in the set.
So it is a non-empty graph P= (V, E) of the form V= {x0, x1, …, xk}, E= {x0x1, x1x2, …, xk-1xk} and every
xi,xj (i≠j) are distinct vertices.
• Length of a path P is the number of edges of P (|E|)
• Pxi: x0,x1,…,xi
xiP: xi,xi+1,…,xk
xiPxj: xi,…,xj
• Two paths P and P’ are independent if none of the paths contains an inner vertex of the
other path, but they may contain end-vertices of the other path.

, • d(u, v): distance between vertices u and v is the length of the shortest path from u to v.
If no path exists, then d(u, v) = ∞.
• Shortest path
- dk[u]: weight of shortest s-u path using ≤ k edges
- Computing this u-v path by Dijkstra’s algorithm for positive weights (O(n
Log(n)+m)):
▪ Greedy algorithm
▪ Maintain d[v] for all v in V, upper-bound on d (u,v)= ∞
▪ D[v]=0 and S=∅
▪ Step-by-step, d[v] becomes d(u,v):
WHILE S≠V DO
u⟵arg minv⊆V\S d[v] (minimum of d[v]-list)
S⟵ S ∪ {u}
∀ edges (u,x) ∈ E:
IF d[x]>d[u]+w(u,x)THEN
d[x]:= d[u]+w(u,x)
▪ Keeps S⊆V, a set of “fixed” vertices for which d[v]=dist(u,v)
- Bellman-Ford algorithm (O(nm)):
▪ D[v]:= ∞, 𝜋[v]=NIL (undefined)
▪ D[s]=0, 𝜋[s]=s
▪ FOR k=1 to n-w DO
• ∀ edges (u,v) ∈E
o IF d[v]>d[u]+w(u,v) THEN
D[v]:= d[u]+w(u,v)
𝜋[v]=u
▪ After round i: d[v1] = d(s, vi)
▪ There is a negative cycle in G if and only if ∃ edge (u, v) ∈ E:
𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢, 𝑣). So, using n edges to get cheaper to v means there
is a negative cycle.
- Path P from s-t is a shortest path, then ∀ u, v ∈ P, uPv is a shortest u-v path in G (if
no negative weighted cycles in G).
▪ Keep d[v] upper-bound on d(s,v)
▪ Keep 𝜋[v] predecessor of v on a shortest s-v path
▪ Compute shortest s-v paths using at most k
edges (k=0,1,…,n-1)
▪ Example:
• K=0 d[s]=0 - d[v1] = d[v2] = d[v3] = d[t]= ∞
• K=1 d[s]=0 - d[v1]=11 - d[v2]=8 - d[v3]= ∞ - d[t]=10
• K=2 d[s]=0 - d[v1]=11 - d[v2]=8 - d[v3]=10 - d[t]=9
• K=3 d[s]=0 - d[v1]=11 - d[v2]=8 - d[v3]=10 - d[t]=7
• diam(G): diameter is the largest distance between any two vertices u and v (so the largest
shortest path!)
• G is disconnected if there exists u and v such that there is no path from u to v.
• Alternating path: a path in G starting with an unmatched vertex and edges on the path
alternate with “∉ 𝑀” and “∈ 𝑀”.
• Augmenting path is a path P in a graph G= (V, E) with a matching M (improved idea of the
maximum matching algorithm).
- It starts and ends with an unmatched vertex.
- Every second edge in P is ∈ M.
- Then, augment matching along path P, i.e. flipping.
• The algorithm returns a maximum matching, because for any matching M of graph G:

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
FamkeNouwens Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
13
Lid sinds
8 jaar
Aantal volgers
9
Documenten
0
Laatst verkocht
1 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen