100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Sumario Ecuaciones diferenciales lineales.

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
14-09-2021
Geschreven in
2020/2021

- Tasa relativa de crecimiento. - Ecuación diferencial para tasa relativa constante. - Sistemas lineales de ecuaciones diferenciales. - Resolución mediante la exponencial de una matriz. - Calculo de e^Dt cuando D es una matriz diagonal. - Calculo de e^Dt cuando D es una matriz diagonalizable. - Ecuaciones diferenciales lineales de orden superior. - Forma canónica de Jordan. - Matrices de Jordan de tamaños 2 y 3. - Forma canónica de Jordan. - Exponencial de una matriz no diagonizable.

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
14 september 2021
Aantal pagina's
3
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Tema 5. Ecuaciones diferenciales lineales.
P1. Tasa relativa de crecimiento.
Si x(t) representa alguna cantidad fisica como el volumen de una sustancia, la población de
ciertas especies, o el número de euros invertidos en acciones, su derivada x’(t) proporciona
la tasa de crecimiento. Con frecuencia es más interesante la llamada tasa relativa de
crecimiento definida por:
𝑥'(𝑡)
𝑇𝑎𝑠𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎 𝑑𝑒 𝑐𝑟𝑒𝑐𝑖𝑚𝑖𝑒𝑛𝑡𝑜 = 𝑥(𝑡)


P2. Ecuación diferencial para tasa relativa constante.
Si la tasa relativa de crecimiento es constante, tenemos:
𝑥'(𝑡)
𝑎= 𝑥(𝑡)
→ 𝑥'(𝑡) = 𝑎𝑥(𝑡)
Esta ecuación se denomina ecuación diferencial porque incluye una derivada. Trivialmente
𝑎𝑡
se comprueba que 𝑥(𝑡) = 𝑐𝑒 son las soluciones de la ecuación diferencial dada. El valor
de c se calcula a partir de una condición inicial.

P3. Sistemas lineales de ecuaciones diferenciales.
Trabajaremos con sistema de ecuaciones diferenciales de la forma:




Matricialmente nos queda como 𝑋'(𝑡) = 𝐴𝑋(𝑡), siendo:




P4. Resolución mediante la exponencial de una matriz.
𝐴
Definición. Dada una matriz cuadrada A, se define la matriz cuadrada del mismo tamaño 𝑒 ,
2 3 4 ∞ 𝑘
𝐴 𝐴 𝐴 𝐴 𝐴
como sigue: 𝑒 = 𝐼 + 𝐴 + 2!
+ 3!
+ 4!
+... = ∑ 𝑘!
𝑘=0
𝐴𝑡
Teorema. Para cualquier vector constante c, 𝑋(𝑡) = 𝑒 𝑐 es una solución de la ecuación
𝐴𝑡
𝑋'(𝑡) = 𝐴𝑋(𝑡). Además, 𝑋(𝑡) = 𝑒 𝑥0es una solución que verifica la condición inicial
𝑋(0) = 𝑥0.

𝐷𝑡
P5. Cálculo de 𝑒 cuando D es una matriz diagonal.
Teorema. Si D es una matriz diagonal cuyos elementos de la diagonal son 𝑑1,..., 𝑑𝑛entonces
𝐷𝑡 𝑑𝑡 𝑑 𝑡
𝑒 es una matriz diagonal, cuyos elementos de la diagonal son 𝑒 1 ,..., 𝑒 𝑛 .
€3,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
merche2002

Maak kennis met de verkoper

Seller avatar
merche2002 Universidad de Málaga
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
5 jaar
Aantal volgers
0
Documenten
32
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen