100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Summary lectures bioinformatics

Beoordeling
-
Verkocht
-
Pagina's
8
Geüpload op
21-08-2021
Geschreven in
2020/2021

A summary of my lecture notes on bioinformatics.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 augustus 2021
Aantal pagina's
8
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Evert bosdriesz
Bevat
Alle colleges

Voorbeeld van de inhoud

Biomarker = measured characteristics which may be used as an indicator of some biological
state or condition.

Homologous proteins often have similar structure and molecular function.

PSI-BLAST:
input = query sequence (the sequence you want to compare), database
output = for each potential hit: e-value, bitscore (alignment score), alignment, PSSM
parameters = reporting e-value threshold (if there was a hit or not), substitution matrix, gap
penalties, word size, inclusion e-value threshold for PSSM (if the hit should be concluded in
the building of the PSSM), max number of iterations (usually 6)

E-value = expected number of non-homologous sequences with score greater than or equal
to a score x in a database of n sequences. Smaller E = better. ex: E-value is 5, means 5 hits
have a score S (can be 5 different S's), which are all bigger than x, where x is the alignment
score of the sequence we actually found.
Bitscore = required size of database in which the current match could be found by chance.
It's a log2 scale and normalised raw score. Each increase by 1 doubles the required
database size (2^bitscore). It does not depend on the database. Gives the same value for
hits in databases of different sizes and hence can be used for searching in a constantly
increasing database. Higher score = better.
E = (m*n)/(2^bitscore)

Structure is better conserved than sequence.

PSI-BLAST basic idea: use results from BLAST query to construct a profile matrix, search
database, make conservation profile, search database with this profile instead of query
sequence, iterate this procedure.

synonymous mutation = DNA mutation that does NOT lead to an amino acid substitution.
nonsynonymous mutation = DNA mutation that DOES lead to an amino acid substitution: -
missense mutation (one AA replaced by another AA), - nonsense mutation (AA replaced by
stopcodon, what happens to the protein?)




Global pairwise alignment:
Find optimal score that matches all letters in both sequences. To find homologous
sequences, compare them and see which parts are more conserved.
input = 2 sequences, substitution matrix, gap penalties
output = optimal alignment score, sequence alignment (corresponding to optimal alignment
score)

, example of scoring algorithm: j is horizontal, i is vertical. So j-1 (horizontal) means
introducing a gap in the VERTICAL sequence, and i-1 (vertical) means introducing a gap in
the HORIZONTAL sequence. Going diagonal means +1 for a match, -1 for a mismatch.
(j-1 basically indicates that you move 1 place in the j direction! So horizontal in this case,
which introduces a gap vertically).


Lowest rightmost cell in the matrix is optical alignment score.
When tracing back and finding multiple optimal routes, choose the high road!

BLOSUM matrix:
Scores amino acids, so used for protein alignment, NO DNA. Which mutations are more
likely to occur?




BLOSUM N = made from conserved blocks in alignments with clustered with at most N%
sequence similarity.
+ values = preferred substitution
- values = avoided substitution
0 values = randomly expected

BLAST overview:
match query sequence with sequences in the database. Splice query into 'words' (substrings
of sequence)
Step 1. determining query words
Step 2. find 'near-exact' matches with scanning the database for occurrence of the words.
Matching of the words is scored by a given substitution substitution matrix. A word is
considered a match when it’s above a threshold
Step 3. extend the match. Stops looking when HSP begins to decrease
Step 4. local/pairwise alignment by extending from the words in both directions while
counting the alignment score using the same substitution matrix
Step 5: e-value

BLAST and PSI-BLAST are multiple alignment.
PSSM is a type of profile. For each sequence position, we can determine how likely it is that
a certain AA occurs.

A PSSM is ALWAYS as long as the query sequence (horizontal length)
A PSSM is ALWAYS 20 deep because there are only 20 amino acids (vertical depth)
(Unless the AA's are the columns… which is usually the case)

Profile drift = if you are too lenient with your E-value threshold, you'll include sequences that
are poor hits, which is going into your profile and is going to broaden to the point where you
start finding less and less relevant hits.
€3,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
merelkouwenhoven

Maak kennis met de verkoper

Seller avatar
merelkouwenhoven Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
4 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen