100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

University of Waterloo MATH 135 Sample Final Exams ( WITH 100 % CORRECT SOLUTIONS )

Beoordeling
-
Verkocht
3
Pagina's
77
Cijfer
A+
Geüpload op
20-07-2021
Geschreven in
2020/2021

University of Waterloo MATH 135 SAMPLE Final Examination Algebra for Honours Mathematics Fall 2016 Instructors: M. Akash, S. Bauman, C. Bruni, B. Charbonneau, A. Gamache, R. Garbary, G. Gauthier-S halom, I. Goulden, J. Koeller, W. Kuo, Y. Liu, A. Menezes, R. Moosa, P. Nelson, J. Pretti, R Trelford, D. Wagner, R. Willard Instructions 1. Fill in your ID number and User ID above. 2. Write your answers in the space provided. If you need more room, use the last two pages, and clearly indicate this on the question page. 3. You must justify all of your answers. Your writing needs to be legible. Your arguments must be logical, clear and easy to understand. 4. There is a reference sheet supplied separately from this exam booklet. There you will find some of the major propositions that were covered in class. You may use any result from the list without proof. Make sure to clearly state the name or the acronym of the result you are using. 5. There are 14 questions. The total marks available in this exam is 50. 1For each of Questions 1 to 6, full marks will be given for a correct answer which is placed in the box provided. Part marks will only be awarded if relevant work is shown in the space provided. 1. What is the greatest common divisor of 1239 and 735? [2 marks] 2. What is the units digit (also known as the ones digit) of 6789? [2 marks] 23. Give all the solutions to z3 + 27 = 0 in standard form. [3 marks] 4. You are eavesdropping on a conversation between Alice and Bob protected by the RSA system. Alice sends Bob a public encryption key (e; n) and receives a ciphertext C. You are able to determine that 88 < n < 92 and 26 < e < 30. What are the values of n and e? [3 marks] 35. Determine all integers x and y such that [3 marks] • 6x + 10y = 14, and • x ≡ 3 (mod 7), and • 20 < y < 40. 6. Consider the polynomial p(x) = x5 + 2x4 + 6x3 + 12x2 − 27x − 54. One root of this polynomial is 3i. Express p(x) as a product of five linear polynomials in C[x]. [3 marks] 4For each part below, in the box provided, indicate whether the given statement [1 mark each] is true (T) or false (F). No justification is required. 7. (a) :(A ) B) is logically equivalent to (:A) ) (:B). (b) :(8x 2 S; P(x)) is logically equivalent to 8x 2 S; (:P(x)). (c) If a; b; c; d 2 Z, a j b, b j c, and c j d, then a j d. (d) If a; b; c 2 Z, and a j bc, then a j b or a j c. (e) (cos π4 + i sin π4 )4 1 − i = 1 2 + i 2 (f) A polar form of the complex number z = −18i is 18(cos (32π ) + i sin (32π )). (g) gcd(01; 02) = 01 5The remaining questions require proofs. Write clearly and justify your steps. Do NOT use the amount of available space as an indication of how long your answer should be". 8. Let p be a prime. Prove that px + 18y = 6 has an integer solution. [4 marks] 69. Prove that if w is an nth root of unity, then w1 is also an nth root of unity. (Recall: The nth roots of unity are the nth roots of 1.) [4 marks] 710. Let a 2 Z. Prove that if a221 ≡ 20 (mod 23) and 100 < a < 125, then a = 112. [3 marks] 811. Let a; b; c; d 2 Z such that ad − bc = 1. Let f(z) : C ! C be given by f(z) = az cz++db. Suppose that z is a complex number such that Im(z) > 0. Prove that Im(f(z)) > 0. 912. Suppose a, b and n are integers. Prove that n j gcd(a; n) · gcd(b; n) if and only if n j ab. [4 marks] 1013. Let f(x) = nX k =0 xk be a polynomial in Z2[x]. [5 marks] Prove by mathematical induction that for all n 2 N, [f(x)]2 = nX k =0 x2k. 1114. Let a and b be coprime positive integers. Prove that f(s; t) 2 N × N : as + bt = abg = ;. [3 marks] 12This page was intentionally left blank. You may use this space if you run out of room for a particular question. If you do, be sure to indicate this clearly here on this page and also on the question page. 13This page was intentionally left blank. You may use this space if you run out of room for a particular question. If you do, be sure to indicate this clearly here on this page and also on the question page. 14MATH 135 F16 Sample Final Exam Solutions 1. What is the greatest common divisor of 1239 and 735? Answer: 21 Work: We can determine this using the EEA: 1239 = 735 + 504 735 = 504 + 231 504 = 2 · 231 + 42 231 = 5 · 42 + 21 42 = 2 · 21 + 0 2. What is the units digit (also known as the ones digit) of 6789? Answer: 6 Work: We are looking for an integer x such that x ≡ 6789 (mod 10) where 0 ≤ x < 10. Note that, for all n, 6n ≡ 6 (mod 10) (We could prove this by induction relying on 62 = 36 ≡ 6 (mod 10).) Alternatively, using CRT, 6789 ≡ 0 (mod 2) 6789 ≡ 1 (mod 5) Thus 6789 ≡ 6 (mod 10). 3. Give all the solutions to z3 + 27 = 0 in standard form. Answer: p3 27 cos π+2 3kπ + ip3 27 sin π+2 3kπfor k = 0; 1; 2 Solution: We have −27 = 27(cos(π) + i sin(π)): Thus, CNRT gives us the three roots above. 4. You are eavesdropping on a conversation between Alice and Bob protected by the RSA system. Alice sends Bob a public encryption key (e; n) and receives a ciphertext C. You are able to determine that 88 < n < 92 and 26 < e < 30. What are the values of n and e? Answer: (e; n) = (29; 91) Solution: Here n must be the product of two distinct primes. The only possibility is n = 13 · 7 = 91: It follows that e must be coprime to (7 − 1)(13 − 1) = 72. The only possibility is e = 29

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
20 juli 2021
Aantal pagina's
77
Geschreven in
2020/2021
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Garcia Walden University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
917
Lid sinds
5 jaar
Aantal volgers
396
Documenten
2114
Laatst verkocht
17 uur geleden
High Scoring Grades

I have everything you need to score high in your exams!!

4,1

155 beoordelingen

5
97
4
15
3
22
2
9
1
12

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen