100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Class Notes Mathematics 324

Beoordeling
-
Verkocht
1
Pagina's
83
Geüpload op
14-07-2021
Geschreven in
2020/2021

This document includes all relevant definitions, theorems and lemmas done in class, with their proofs. It also includes detailed explanations and workings of all exercises given as homework, as well as problems in the textbook and additional questions (with solutions) given in the tutorials.

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
14 juli 2021
Aantal pagina's
83
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
S mouton
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Complex Analysis 324
C.L. JUSTUS
July 2021


1 Analytic Functions
1.1 Cauchy-Riemann Equations
Theorem p.64 Suppose that f (z) = u(x, y) + iv(x, y) and f is differentiable
at z0 = x0 + iy0 . Then the first order partial derivatives of u and v exist at
(x0 , y0 ) and satisfy the Cauchy-Riemann equations at (x0 , y0 ):
ux = vy , uy = −vx
Further, f 0 (z0 ) = ux (x0 , y0 ) + ivx (x0 , y0 ).

Proof – We first note that if z0 = x0 + iy0 and z = x + iy, then
f (z0 + z) − f (z0 ) u(x0 + x, y0 + y) − u(x0 , y0 ) v(x0 + x, y0 + y) − v(x0 , y0 )
= +i·
z x + iy x + iy
(1)

Suppose that f is differentiable at z0 , i.e. f 0 (z0 ) exists, i.e. limz→0 f (z0 +z)−f
z
(z0 )

exists, i.e. f (z0 +z)−f
z
(z0 )
tends to f 0 (z0 ) irrespective of the path along which z
tends to zero. By Theorem 1 p.47, and letting x → 0 and y = 0 in (1), so that
z → 0, we see that ux and vx both exist at (x0 , y0 ) and that
f (z0 + z) − f (z0 ) u(x0 + x, y0 ) − u(x0 , y0 ) v(x0 + x, y0 ) − v(x0 , y0 )
= +i·
z x x
→ ux (x0 , y0 ) + ivx (x0 , y0 )
(2)
Similarly, letting y → 0 and x = 0, so that z → 0, we see that both uy and vy
exist at (x0 , y0 ) and that

f (z0 + z) − f (z0 ) u(x0 , y0 + y) − u(x0 , y0 ) v(x0 , y0 + y) − v(x0 , y0 )
= +i·
z iy iy
v(x0 , y0 + y) − v(x0 , y0 ) u(x0 , y0 + y) − u(x0 , y0 )
= −i·
y y
→ vy (x0 , y0 ) − iuy (x0 , y0 )
(3)


1

,From (2) and (3), it now follows that

f 0 (z0 ) = ux (x0 , y0 ) + ivx (x0 , y0 ) = vy (x0 , y0 ) − iuy (x0 , y0 )

and from the latter, that

ux (x0 , y0 ) = vy (x0 , y0 ), uy (x0 , y0 ) = −vx (x0 , y0 )

Q.E.D.

Theorem p.66 Let f (z) = u(x, y) + iv(x, y) be defined in a neighbourhood
of z0 = x0 + iy0 , and suppose that (1) ux , uy , vx , and vy exist everywhere in the
neighbourhood of z0 , (2) ux , uy , vx , and vy are all continuous at (x0 , y0 ), and
(3) ux , uy , vx , and vy satisfy the Cauchy-Riemann equations ux = vy , uy = −vx
at (x0 , y0 ), then f 0 (z0 ) exists and f 0 (z0 ) = ux (x0 , y0 ) + ivx (x0 , y0 ).

Example 1 Investigate the differentiability of f (z) = ez .

Solution – Since eiy = cos y + i sin y, it follows that ez = ex (cos y + i sin y) =
e cos y + i(ex sin y) = u(x, y) + iv(x, y) where u(x, y) = ex cos y and v(x, y) =
x

ex sin y. Clearly, ux , uy , vx and vy all exist and are continuous at all points (x, y).
Now we are only left to check whether the third condition in Theorem 2 holds
- we have that ux = ex cos y, uy = −ex sin y, vx = ex sin y and vy = ex cos y, so
that ux = vy and uy = −vx . Therefore, it follows from Theorem 2(p.66) that
f 0 (z) exists and, in particular, f 0 (z) = ex cos y + i(ex sin y) = ez .

Example 2 Investigate the differentiability of f (z) = |z|2 .

Solution – We first note that f (z) = |z|2 = x2 + y 2 = u(x, y) + iv(x, y) where
u(x, y) = x2 + y 2 and v(x, y) = 0. Clearly, ux , uy , vx and vy all exist and are
continuous at all points (x, y). Furthermore, ux = 2x, uy = 2y, vx = vy = 0, so
that ux = vy and uy = −vx only if x = 0 and y = 0. By Theorem 2 (p.66), f has
derivative only at the point (0, 0), and in particular, f 0 (0) = ux (0, 0)+ivx (0, 0) =
0 + i0 = 0.

Example 3 Investigate the differentiability of f (z) = x3 + i(1 − y)3 .

Solution – Since u(x, y) = x3 and v(x, y) = (1 − y)3 , we can clearly see that
ux , uy , vx and vy all exist and are continuous at all points (x, y). Furthermore,
ux = 3x2 , uy = 0, vx = 0 and vy = −3(1 − y)2 , so that uy = −vx for all
points (x, y) (since 0 = 0) and ux = vy only if 3x2 = −3(1 − y)2 only if
x2 + (1 − y)2 = 0 only if x = 0 and y = 1. Therefore, the function f has
derivative only at the point (0, 1). It follows from Theorem 2 (p.66) that f
is differentiable nowhere in C except at z = 0 + i(1) = i, and in particular,
f 0 (z) = ux (0, 1) + ivx (0, 1) = 0 + i.0 = 0.



2

,Theorem p. 69 Suppose the function f (z) = u(r, θ) + iv(r, θ) is defined in an
-neighbourhood of a non-zero point z0 = r0 eiθ0 , and suppose that (1) ur , uθ , vr ,
and vθ exist everywhere in the neighbourhood of z0 , (2) ur , uθ , vr , and vθ are
all continuous at (r0 , θ0 ), and (3) ur , uθ , vr , and vθ satisfy the polar form of the
Cauchy-Riemann equations rur = vθ , uθ = −rvr at (r0 , θ0 ), then f 0 (z0 ) exists
and f 0 (z0 ) = e−iθ0 [ur (r0 , θ0 ) + ivr (r0 , θ0 )].

1
Example 4 Investigate the differentiability of f (z) = z2 by using Theorem
p.69.

Solution – First we note that if z = reiθ 6= 0, then r > 0 (r 6= 0). Further,
we have that f (z) = z12 = (re1iθ )2 = r12 ei(−2θ) = r12 (cos (−2θ) + i sin (−2θ)) =
1
r 2 (cos (2θ) + i(− sin (2θ)) so that, if f (z) = u(r, θ) + iv(r, θ), we would have
that u(r, θ) = r12 cos (2θ) and v(r, θ) = −1 r 2 sin (2θ). Clearly, ur , uθ , vr , and vθ
all exist and are continuous at each point (r, θ). Further, ur = −2 r 3 cos 2θ, uθ =
−2 2 2
r 2 sin 2θ, v r = r 3 sin 2θ, and v θ = r 2 cos 2θ. It follows that all partial deriva-
tives satisfy the polar form of the Cauchy-Riemann equations at all points
z ∈ C \ {0}. Hence, by Theorem 3 (p.69), f is differentiable at every point
in C \ {0}, and in particular, f 0 (z) = e−iθ ( −2 2 −2
r 3 cos 2θ + i( r 3 sin 2θ)) = z 3 .


Example 5 Is the converse of Theorem p.64 true? If so, explain why. If not,
give a counterexample.

Solution – [We have to check if the following is true - If the first order partial
derivatives ux , uy , vx and vy exist and satisfy the Cauchy–Riemann equations
at a point z0 = (x0 , y0 ), does it follow that the derivative of f at z0 exists? That
is, does f 0 (z0 ) = limu→0 f (z+u)−f
u
(z)
exist?] Suppose that
 z̄2
if z 6= 0
f (z) = z
0 if z = 0


Let’s start by investigating whether the Cauchy–Riemann equations are satisfied
at the point (0, 0). In order to do so, we need to write f in the form u + iv: if
z = x + iy, then
( 3
x −3xy 2
x2 +y 2 if (x, y) 6= (0, 0)
u(x, y) =
0 if (x, y) = (0, 0)


and
(
y 3 −3x2 y
x2 +y 2 if (x, y) 6= (0, 0)
v(x, y) =
0 if (x, y) = (0, 0)




3

, To see whether the Cauchy–Riemann equations hold at (0, 0), we need to find
ux , uy , vx and vy at (0, 0). But, since the definitions of both u and v at non–zero
points do not apply at (0, 0), we must use the definition of a partial derivative
to find the first order partial derivatives at the point (0, 0):
3
h
u(h + 0, 0) − u(0, 0) 2
ux (0, 0) = lim = lim h = lim 1 = 1
h→0 h h→0 h h→0

and 3
h
v(0, h + 0) − v(0, 0) 2
vy (0, 0) = lim = lim h = lim 1 = 1
h→0 h h→0 h h→0
so that ux and vy both exist at (0, 0), and ux (0, 0) = 1 = vy (0, 0). Similarly,
uy and vx exist at (0, 0) and uy (0, 0) = −vx (0, 0) so that the Cauchy–Riemann
equations are satisfied at (0, 0). The questions remains – does f 0 (0) exist? That
is, does limu→0 f (u+0)−f
u
(0)
= limu→0 f (u)
u exist? If u = x + iy, (u 6= 0) then

f (u) ū2 (x − iy)2
= 2 =
u u (x + iy)2
So we have that

1 if x = 0 (u 6= 0)
f (u) 
= 1 if y = 0 (u 6= 0)
u
−1 if x = y (u 6= 0)




So f (u)
u tends to 1 as u tends to 0 along the x or y axis, and tends to −1 as u tends
to 0 along the line x = y. Therefore, limu→0 f (u) u = limu→0 f (u+0)−f
u
(0)
does
0
not exist, i.e. f (0) does not exist. Therefore we conclude by counterexample
that the converse of Theorem p.64 does not hold. That is, the first order partial
derivatives may exist and satisfy the Cauchy–Riemann equations at a point
z0 = x0 + iy0 , but that does not necessarily mean that f 0 (z0 ) exists.

1.2 Analytic Functions
Definition A complex valued function f is analytic on an open set S if f is
differentiable at each point in S, and f is analytic at a point z0 if f is analytic
on some neighbourhood of z0 . A function f is entire if f is analytic on C.

Example 1 Investigate the analyticity of f (z) = z1 using the definition of the
derivative. Solution – In order to see whether f is analytic on some open set,
we first have to figure out on which set of values f is differentiable. By using
the definition of differentiability, we see that if z 6= 0, then
1 1
f (z + u) − f (z) z+u − z −1 1
f 0 (z) = lim = lim = lim =− 2
u→0 u u→0 u z→0 z(z + u) z
That is, the derivative of f exists at each point in C \ {0}. Hence f is analytic
on C \ {0}.


4
€4,58
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
theclaudster2

Maak kennis met de verkoper

Seller avatar
theclaudster2 Stellenbosch University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
8 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen