100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Finance 1 Week 2 Summary

Beoordeling
-
Verkocht
-
Pagina's
8
Geüpload op
05-07-2021
Geschreven in
2019/2020

Finance 1 Week 2 Summary including readings










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
5 juli 2021
Aantal pagina's
8
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Week 2:

Preparation: Chap 4: The Time
Value of Money

Stream of cash flows: a series of cash flows lasting several periods. Can be
represented on a timeline: important first step in organizing and then solving a
financial problem.

The three rules of Time Travel:
- Comparing and combining values: It is only possible to compare or
combine values at the same point in time, because a dollar today and a
dollar in one year are not equivalent.
- Moving Cash Flows Forward in Time: compounding = our second rule
stipulates that to move a cash flow forward in time, you must compound
it. Compound interest: the effect of earning “interest on interest”.
Future Value of a Cash Flow: FVn = C x (1 + r)n
- Moving Cash Flows Back in Time: Discounting = the process of moving a
value or cash flow backward in time – finding the equivalent value of today
of a future cash flow.
Present value of a Cash Flow: PV = C / (1 + r) n

N
Present Value of a Cash Flow Stream: PV = ∑ PV (C n )
n=0
Future Value of a Cash Flow stream with a Present Value of PV: FV n = PV x (1 +
r)n

 Aim: compare the costs and benefits of a project to evaluate a long-term
investment decision.

NPV = PV(benefits) – PV(costs)
NPV = PV(benefits – costs) present value of cash flows of the opportunity

Perpetuity: a stream of equal cash flows occurring at regular intervals and last
forever. (eg british government bond: consol).

The first cash flow occurs at the end of the first period = payment in arrears.

C
PV = ∑( n
n =1 1+r )
When investing, we withdraw the interest we have earned, C = r x P, leaving the
principal P.
Present Value of a Perpetuity: PV (C in perpetuity) = C/ r

Annuity: a stream of N equal cash flows paid at regular intervals. ≠ w perpetuity
is that it ends.
Pinitial investment = PV (annuity of C for N periods) + PV ( P in period N)
PV (annuity of C for N periods) = P – PV (P in period N)
−P
PV (annuity of C for N periods) = P
( 1+ r )N

, Present Value of an Annuity: PV (annuity of C for N periods with the interest rate
−1
r) = C x (1/ r) (1 ¿
( 1+ r )N
Future Value of Annuity: FV (annuity) = C x (1/r) ((1 + r)N – 1)

Growing Perpetuity: a stream of cash flows occurring at regular intervals and
grow at a constant rate forever. The first payment doesn’t include growth.

C ( 1+ g )n−1
PV = ∑ n
n =1 ( 1+r )
Present Value of a Growing Perpetuity: PV(growing perpetuity) = C / (r – g)

Growing annuity: a stream of N growing cash flows, paid at regular intervals. It is
a growing perpetuity that eventually comes to an end. The fist cash flow still
arrives at the end of the first period and the first cash flow does not grow.
1 1+ g N
Present Value of a Growing Annuity: PV = C¿ (1− )
r−g 1+r

PMT present value of annuity + FVpresent value of final payment + PV initial amount =0

Everything about annual cash flow streams applies to monthly cash flows
streams as long as the interest rate is specified as a monthly rate, the number of
periods is expressed in months.

Loan payment problem: to solve it, refer the load principal as the present value.
Then just has to inverse the annuity formula.
P
Loan or Annuity Payment: C = ∗(1− 1 )
1
r ( 1+ r )N

Internal rate of return (IRR) = the interest rate setting the net present value of
cash flow to 0
IRR with 2 cash flows = (FV / P)1/N – 1  compound annual growth rate
(CAGR)
IRR of growing perpetuity = (C/P) + g



Chap 5: Interest rates

Interest rates are often stated as effective annual rate (EAR): indicates the actual
amount being earned at the end of one year.

Adjusting the Discount Rate to Different Time periods: changing the power of the
interest rate (1 + r)
General Equation for Discount Rate Period Conversion: Equivalent n-Period
Discount Rate = (1+r)n –1

Annual Percentage Rate (APR) indicates the amount of simple interest earned in
one year, without the effect of compounding.
A way of quoting a monthly interest rate, rather than an annual one.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
apollinecroc Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
15
Lid sinds
4 jaar
Aantal volgers
11
Documenten
39
Laatst verkocht
5 maanden geleden

4,0

2 beoordelingen

5
1
4
0
3
1
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen