100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Summary lectures Statistics II (LIX002X05), RuG 2020/2021

Beoordeling
-
Verkocht
1
Pagina's
37
Geüpload op
05-06-2021
Geschreven in
2020/2021

Summary of the course lectures Statistics II, bachelor Communication and Information Sciences or Information Science (Informatiekunde). Summary consists of all the information given in the lectures, both on the slides and spoken information. Also contains screenshots from the PowerPoints with formulas and output in R. Document is written in English.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
5 juni 2021
Aantal pagina's
37
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
A. toral ruiz
Bevat
Alle colleges

Onderwerpen

  • statistics ii commu

Voorbeeld van de inhoud

STATISTICS II LECTURES SUMMARY

Lecture 1 One-way ANOVA

Comparing means of groups

▪ Do two groups have the same population mean?
→ t-test
“Is there a difference in the effectiveness between two methods for reading lessons
for second-graders?”
▪ Do three or more groups have the same population mean?
→ ANOVA
“Is there a difference in the effectiveness between three methods for reading lessons
for second-graders?”

You can test the second question with multiple t-tests, but this comes with the inflation of
surprise → when one performs multiple comparisons on the same data, the probability of
finding a result goes up: Type I error
▪ e.g. consider 3 groups: A, B, C. We have 3 pairwise comparisons (A, B), (A, C), (B, C)
- p < 0.05, so the probability of no Type I error is 95%
- Each test is conducted three times, so the probability of no Type I error is 0.95 3 =
0.857
- Probability of Type I error is 1-0.857 = 14.3%

ANOVA stands for analysis of variance, we compare the means of three or more groups
Three different types of ANOVA will be covered:
▪ One-way
- observations are independent (each subject is measured once)
- one experimental condition
- between-group variables = different groups or subjects assigned to different
conditions
▪ Factorial
- observations are independent
- two or more experimental conditions, we can measure individual effects and
interactions
- between-group variables
▪ Repeated measures
- each subject is tested more than once, or
- each stimulus is presented more than once
- within-subject variables = the same subjects tested in more than one condition

When an experiment uses both between-group variables and within-subject variables, mixed
ANOVA is used




1

,One-way ANOVA – Step by Step in R

1. Hypotheses




2. Start with descriptive statistics to see what the data looks like



→ when data is relatively similar, the medians will be close to each other. When the data is
skewed, the medians will be further away from each other.

3. Run test




Source
Groups reflects variability between the groups
Error reflects the variability within the groups

DFS
DFG = nr. of groups (I) – 1
DFE = nr. of observations (N) – nr. of groups (I)

Sum squares
SSG = how much variation there is between groups
SSE = how much variation there is within groups




2

,F-value
MSG/MSE = variation normalized by the degrees of freedom in the groups divided by the
normalized variation in the error

Between-group variation: formulas

SSG = Sum of Squares Group
▪ Measures variation of the group means around the overall mean



ni = nr. of observations in each group
x̄ = overall mean

DFG = Degrees of Freedom groups
▪ SSG measures variation of the I sample means around one overall mean, its degrees
of freedom are I – 1

MSG = Mean Sum of Squares groups
▪ SSG / DFG

Within-group variation: formulas

SSE = Sum of Squares Error
▪ Measures variation of observations around their group mean



^ through each group, and within each group through each observation

DFE = Degrees of Freedom error
▪ Since we have N observations being compared to I sample means, the degrees of
freedom are N – I

MSE = Mean Sum of Squares error
▪ SSE / DFE

Once you have calculated MSG and MSE, you can calculate F

F-value is a statistic that is approximately 1 if H0 is true and tends to be larger if Ha is true.
→ the p-value gets calculated by F and the degrees of freedom
▪ F = MSG / MSE

Effect size
R2 or n2 (eta squared) shows the proportion of the variability in the outcome variable that
can be explained in terms of the predictor
→ e.g. what percentage of the number of modulations can be explained by differences in age




3

, ▪ n2 = SSG / SSG + SSE (= SST)




→ e.g. 63% (0.63) of the variation in the differences between groups is explained by the age
distinction
→ R squared can be inflated by adding non-significant terms to the model (more predictors),
so use adjusted R squared instead of R squared; its value will always be equal to or less than
that of R squared

Post-hoc tests
With ANOVA, we only get to know whether all groups means are the same or not. Post-hoc
tests are conducted to find out which group means differ from each other
→ conduct multiple t-test between each pair of groups, but with a correction!
▪ Bonferroni alpha = divide alpha level by number of comparisons/tests
▪ Holm

→ more powerful and less chance of Type II error

Assumptions
1. Independence
→ observations are independent
2. Interval scale
→ response variable is at least interval-scaled
3. Normality
→ the residuals are normally distributed (each sample is drawn from a normally distributed
population)
▪ Use Shapiro-Wilk test

H0 = each group follows a normal distribution
When p < 0.05, the group does not follow a normal distribution
4. Homogeneity of variance
→ the variance is homoscedastic, i.e. the variances in all groups are equal
▪ Use Levene’s test

H0 = the variances in the different groups are equal
When p < 0.05, variance is not equal
▪ Use Fligner-Killeen test when data is not normally distributed


There are multiple alternative tests when assumptions are still not met:
▪ No equal variance: Welch one-way test, oneway.test()
▪ Non-normality: Kruskal-Wallis test, kruskal.test()
H0 = the population median is the same for all groups
▪ Both violated: non-parametric ANOVA, oneway_test()



4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
aesther30 Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
97
Lid sinds
9 jaar
Aantal volgers
73
Documenten
17
Laatst verkocht
3 weken geleden

Op deze pagina vind je alle samenvattingen die ik heb geschreven voor de studie Communication and Information Sciences aan de Rijksuniversiteit Groningen. Ik heb voor vrijwel alle vakken die werden afgesloten met een tentamen een samenvatting gemaakt, waarbij ik geen enkel tentamen heb hoeven herkansen. Momenteel ben ik bezig met het samenvatten van: - Visual Language, Van den Broek et al. (vak Pictures in Professional Communication)

Lees meer Lees minder
3,9

9 beoordelingen

5
2
4
4
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen