100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Rekenen en Wiskunde in de praktijk, H1

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
17-05-2021
Geschreven in
2018/2019

Samenvatting van Hoofdstuk 1 uit het boek 'Rekenen en Wiskunde in de praktijk'.









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 1
Geüpload op
17 mei 2021
Aantal pagina's
3
Geschreven in
2018/2019
Type
Samenvatting

Voorbeeld van de inhoud

Samenvatting ‘Rekenen en wiskunde in de praktijk’.
Hoofdstuk 1 ‘Hele getallen’.
Thema deelbaarheid
Alle even getallen zijn deelbaar door 2!

Als je gaat delen door 4, hoef je alleen naar de laatste twee getallen te kijken; 756 : 4. Je kijk naar de
laatste twee cijfers; 56. 56 is deelbaar door 4, dus 756 dan ook. Zo kun je snel tot een antwoord
komen, en hoef je niet de hele som uit te rekenen.

Een getal is deelbaar door 8 als de laatste drie cijfers van het getal deelbaar zijn door 8; 705 432. Je
gaat na of 432 deelbaar is door 8, en dat kan; 400 en 32 kun je beide delen door 8.
Elk duizendtal is deelbaar door 8!

Als je gaat delen door 16, gaat het om de laatste vier cijfers; 783 927 884 816, als 4816 deelbaar is
door 16, wat zo is, is het hele getal ook deelbaar door 16.

De deelbaarheid door machten van 2 (2, 4, 8, 16, 32 enz.) heeft soortgelijke kenmerken.

Een getal is deelbaar door 9 als de som van de cijfers van de getal deelbaar is door 9; bijvoorbeeld
6507. 6 + 5 + 0 + 7 = 18. 18 is deelbaar door 9, dus 6507 ook.
Elk duizendtal is een negenvoud + 1. (1000 = 999 + 1, 2000 = 2 x 999 + 2 ect)
De verklaring dat 6507 deelbaar is door 9 vind je dus door het getal als volgt te splitsen:
- 6000 = 6 x 999 + 6
- 500 = 5 x 99 + 5
- 0=0x9+0
- 7=0x9+7
6507 = (6 x 999 + 5 x 99 + 0 x 9) + ( 6 + 5 + 0 + 7) = een negenvoud + 18

Een getal is deelbaar door 3 als de som van de cijfers van dat getal deelbaar is door 3. Dit berust ook
op de eigenschap dat elk duizendtal een drievoud + 1 is. (1000 = 999 + 1 ect)
Het verschil met de verklaring voor het kenmerk van deelbaarheid door 9 is dat de som van de resten
deelbaar moet zijn door 3. Zo is 732 niet deelbaar door 9, want 7 + 3 + 2 = 12, en 12 is wel deelbaar
door 3, maar niet door 9.

Elk zesvoud is deelbaar door 2 én 3, want dat zijn de delers van 6. Dit is ook andersom zo!!!

‘Een heel getal is deelbaar door p x q als het deelbaar is door p én q, en als bovendien p en q
priemgetallen zijn’.

Priemgetallen zijn alleen deelbaar door 1 en zichzelf.
Het getal 1 is géén priemgetal, het is namelijk wel deelbaar door 1 en zichzelf, maar het zijn dezelfde
getallen.
Priemgetallen zijn belangrijk bij het (de)coderen.
Methode om priemgetallen te schrappen;
- Getal 1 schrappen
- Alle tweevouden schrappen, behalve 2 zelf!
- Alle drievouden schrappen
- Alle viervouden schrappen
- Alle vijfvouden schrappen
- Alle zevenvouden schrappen

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
hannahvdbosch Hogeschool Windesheim
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
68
Lid sinds
4 jaar
Aantal volgers
48
Documenten
21
Laatst verkocht
8 maanden geleden

4,0

9 beoordelingen

5
2
4
6
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen