100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary statistics Field (English) Ch. 3, 6, 8-9, 11-13, 15

Beoordeling
-
Verkocht
-
Pagina's
28
Geüpload op
14-04-2021
Geschreven in
2019/2020

This summary covers all aspects that were discussed (and you will be tested on) during the 4.4C AMDA course.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 3, 6, 8, 9, 11, 12, 13, 15
Geüpload op
14 april 2021
Aantal pagina's
28
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Field summary (5th ed.)
Chapter 3: NHST and effect sizes p. 3
NHST
researcher degrees of freedom
statistical significance
effect sizes: Cohen’s d and Pearson’s r
odds ratio

Chapter 6: Statistical bias p. 4
bias
outlier
violation of assumption: linearity and additivity, normality, homogeneity/homoscedasticity,
independence
trimming
winsorizing
bootstrapping

Chapter 8: Correlations p. 6
covariation
bivariate correlation
one-tailed and two-tailed probability
directional and non-directional hypothesis
point-biserial correlation and biserial correlation
discrete dichotomy and continuous dichotomy
semi-partial (part) correlation and partial correlation

Chapter 9: Linear regression model p. 8
single regression
predicted value
multiple regression
parameter
total error
residual sum of squares, SSR
goodness of fit
sum of squared differences, SST
proportion of improvement, R2
F-statistic
mean squares, MS
unstandardized residuals, standardized residuals, and studentized residuals
adjusted predicted value
Cook’s distance
leverage
Mahalanobis distance
multicollinearity, VIF, and tolerance
cross-validation
hierarchical regression
forced entry

,stepwise, forward and backward
F-change
eigenvalues

Chapter 11: Moderation, mediation, and multi-category predictors p. 12
moderation
grand mean centring
simple slopes analysis
zone of significance
mediation
simple relationship and mediated relationship

Chapter 12: Comparing several independent means p. 15
F-statistic
SST, SSM, dfM, SSR, MS, MSM, MSR
Welch’s F and Brown-Forsythe’s F
contrast coding
post hoc tests
weights for planned contrasts
grand mean
non-orthogonal contrasts
standard contrasts: deviation (first and last), simple (first and last), repeated, Helmert, difference
(reverse Helmert)
between-group effects table
within-group effects table
harmonic mean sample size

Chapter 13: ANCOVA p. 20
covariates
adjusted means
partial eta-squared
omega squared

Chapter 14: Factorial designs p. 22
independent factorial design (Ch. 14)
repeated-measures (related) factorial design (Ch. 15)
mixed design (Ch. 16)
slope interaction term

Chapter 15: Repeated-measures designs p. 25
random intercept model
sphericity and Mauchly’s test
Greenhouse-Geisser and Huynh-Feldt
lower-bound estimate of sphericity
SSw, dfSSW
MSM, MSR, and F
factorial repeated-measures design

Chapter 16: Mixed designs p. 28
mixed designs

, Chapter 3: NHST and effect sizes
Null hypothesis significance testing (NHST)
Tests H0 against Ha to see whether Ha is likely to be true. p is used as an index of the evidence weight
against H0.
 Problem with NHST: reliance on merely refuting H0 (all-or-nothing thinking, with p<.05 or >.05)
 Researcher degrees of freedom: showing results in the most favorable light possible (not
controlling the Type I error rate)
- p-hacking: selectively reporting significant p-values
- p-HARKing: hypothesizing after the results are known

Statistical significance
p = the probability of getting a test statistic at least as large as the one observed, relative to all
possible values of the test statistic from an infinite number of identical replications.
 p doesn’t measure the size/importance of an effect, so don’t use p as the measure of probability
that the hypothesis in question is true/false
 small p suggests data are compatible with Ha, large p suggests data are compatible with H0

Effect sizes
Effect sizes = objective and (usually) standardized measures of the magnitude of observed effects.
 Standardized: allows to compare [effect sizes] across different studies that have measured different
variables/used different scales of measurement.
The size of the effect should be placed within the research context. However, rules of thumb are:
Cohen’s d Pearson’s r
small .2 .1 r=.1 explains 1% of total variance
medium .5 .3 r=.3 explains 9% of total variance
large .8 .8 (r=.5 explains 25% of total variance)

Cohen’s d: Calculated by dividing the difference between means by the standard deviation:
d = (mean1 – mean2)/s
 expressed in s-units, therefore standardized, and more reliable than Pearson’s r when group sizes
are discrepant

Pearson’s correlation coefficient r: A measure of the strength of the relationship between 2 variables
(either continuous or one continuous and one categorical with two categories).
 r is not linear, meaning r=60 is not 2x r=30. It is constrained to lie between 0 (no effect) and 1.

Odds ratio: Popular effect size for counts as an outcome (e.g. on 2 categorical variables) with outcome
being a number of participants choosing each option on the categorical variables).
 count is summarized in a [2x2] contingency table
 odds = pevent/pno event = pevent/total / pno event/total
 odds = 1 indicates that the odds of one outcome are the same as odds for the other outcome

Effect sizes as an indication to NHST:
- interpreting effects on a continuum rather than a rule (of p < .05)
- affected by sample size, but without a decision rule attached (e.g. p < .05)
- due to absence of decision rule: less researcher degrees of freedom.

Effect sizes can be used in a meta-analysis as it gives the average effect size across studies: ∑effect
sizes/Neffect sizes

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
NienkeRaaijmakers Hogeschool Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
45
Lid sinds
8 jaar
Aantal volgers
28
Documenten
10
Laatst verkocht
1 week geleden

4,6

5 beoordelingen

5
3
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen