100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary MATH 100 midterm exam review 2

Beoordeling
-
Verkocht
1
Pagina's
23
Geüpload op
22-03-2021
Geschreven in
2019/2020

MATH 100 midterm exam review 2

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
22 maart 2021
Aantal pagina's
23
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

MATHEMATICS 100 – Practice Problem Solutions


1. Analytically, first note that if 2 x  1  0, the inequality is automatically satisfied. So
1
part of the solution is x   . For 2 x  1  0 (so that x   12 ) square both sides and
2
gather all terms on one side of the equation:
x  1  2 x  1  x 2  2 x  1  4 x 2  4 x  1  3x 2  6 x  0  3xx  2  0. Thus,
2 2


using x  0 and x  2 to divide up the number line into intervals gives the following:




The solution satisfying x   12 is  12 ,0 .
Thus, the solution to the inequality is  ,0 .
Graphically, check out the graph below:




Again, the solution is  ,0 .

2. This is an ugly function, but you approach the question of its domain the same way
that you should approach the question of any domain: start with all values of x and
remove any values that cause any part of the function to become undefined. Examine
each part of f  x  separately.
3
1
ex is defined for all x, so no restriction to the domain from this term.

 x 
ln   is only defined provided that its argument is positive, so we need
 x  x 1 
2




1

, x
 0. First, this means that x  0, and so x  0 . Second, since the numerator
x  x2 1
is now positive, we need x  x 2  1  0 as well. For this quantity to even be defined, we
must have x 2  1  0, which means x must satisfy either x  1 or x  1 . Finally, we
also need x  x 2  1  0. Note that for this to be true, x must be positive , since

x 2  1  0. So, for x  0, we have:
x  x 2  1  0  x  x 2  1  x 2  x 2  1,
which is always true.
Thus, for this part of the function f  x  to be defined, we must have x  1 .

arcsin  e x  is defined only when its argument is between -1 and +1. Since e x  0, this
means we must have e x  1  x  ln1  x  0 .
Sooooo, for all parts of f  x  to be defined we need both x  1 and x  0. This is clearly
impossible, so the domain of f is  (the empty set). (Interesting, eh? This function is
undefined for all x.)

x
3. a) We must have  0, since you can only take the ln of positive numbers. To
x 1
solve this inequality: set the top to 0 (giving x  0 ), set the bottom to 0 (giving x  1 ).
x
These numbers then divide the number line into intervals upon which is always of
x 1
one sign. Pick a point in each interval and sub it into the function:
x
 , 1 : sub x  2 to find that 0
x 1
x
 1,0  : sub x   12 to find that 0
x 1
x
 0,   : sub x  1 to find that 0
x 1
The domain of f is thus  , 1   0,   .
 x 
b) Interchange x and y in the formula y  ln   and solve for y:
 x 1 
 y  ex
x  ln    e x

y
  
y  1 e x
 y  e x
 y  ye x
 y 1 e x
   y.
 y 1  y 1 1 ex
ex
Thus, f 1  x   . Since e x is defined for all x, the only restriction to the domain is
1 e x


that 1  e  0  x  0. The domain of f 1  x  is thus  ,0    0,   .
x


c) Since f and f 1 are inverse functions, the domain of one is the range of the other.
Thus, the range of f is  ,0    0,   , and the range of f 1 is  , 1   0,   .

2

, 4. y  e x , x  1, 0  y  e. Interchange x and y to obtain:
x  e y , y  1, 0  x  e  y  ln x, y  1, 0  x  e.
y   x, x  1, y  1. Again interchange x and y:
x   y, y  1, x  1  y   x, y  1, x  1.
The inverse function is therefore:
ln x, 0  x  e
f 1  x    .
 x, x  1
Its domain is thus  , 1   0, e.

5. i) First, the  1n causes the a n to flip signs; thus, the limit can only exist if the
remaining part of the term goes to zero. Since the higher power of n is in the
denominator, you should expect this to be the case. To prove that it is:
n 1

  0  lim  1 4
n 0 n
 lim n 4 1  lim
n4 n3
 0.
n
lim 4
n  n  1 n  1  
4 
n  1
1 n  n 1
4 4
n n n

ii) This has the form   , which is indeterminate. This means you have to simplify.
Because of the cube roots, recall the following: a 3  b 3  a  ba 2  ab  b 2 . Setting
a  3 n 3  n 2  1 and b  3 n 3  1 gives the following:
n 3
 
 n 2  1  n3  1    3
n3  n2  1  3 n3  1 n3  n2  1  2/3

 n3  n2  1  n
1/ 3 3
1 
1/ 3
 
 n3  1
2/


which simplifies to:
n2  n
3 3
 n 2  1  3 n3  1 n3  n 2  1  
2/3

 n3  n 2  1  n
1/ 3 3
1 1/ 3

 n3  1 
2/3

or
n2
n  n 1
3 2

2/3

 n  n 1
3 2
 n
1/ 3 3
1 
1/ 3

 n 1 3
 2/3
  3 n 3  n 2  1  3 n 3  1.

Thus,
n2
lim 3 n 3  n 2  1  3 n 3  1  lim
n  n 
n 3
 n2 1 
2/3

 n3  n 2  1  n
1/ 3 3
1 
1/ 3

 n3  1  2/3

n2

lim
n 
n 1 
2 1
n  n13 2/3

 n 2 1  1n  n13  1  
1/ 3 1 1/ 3
n3

 n 2 1  n13  
2/3


1 1
 .
lim
n 
1  1
n  n3

1 2/3

 1  1n   1  
1 1/ 3
n3
1 1/ 3
n3
 1  
1 2/3
n3
3

6. a) This means to check whether or not the limit as n   exists. For functions
involving powers of n, factor out the highest power of n from the numerator and
denominator:
3
6n 8  3n 2  cos n 3 n 8 6  3  cos n
n6 n8

n  3 6  n36  cos
n8
n

 lim  lim .
 
lim
n 4
n 9  5n 3  sin n n 4
n 9 1  56  sin9n n
n  4 1  n56  sinn9n
n n

8 9 5
Note:   ; thus we have
3 4 12
3
€6,59
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
xuyian222

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
xuyian222 UNIVERSITY OF ALBERTA
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
1
Documenten
39
Laatst verkocht
4 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen