ANSWERS
Finding Domain - CORRECT ANSWERS ✔✔Rule 1) Cannot
|\ |\ |\ |\ |\ |\ |\ |\
divide by zero |\ |\
set denominator to zero and solve
|\ |\ |\ |\ |\
Finding Domain - CORRECT ANSWERS ✔✔Rule 2) cannot
|\ |\ |\ |\ |\ |\ |\ |\
take the square root of negative number
|\ |\ |\ |\ |\ |\
set what is inside radical >= 0 and solve
|\ |\ |\ |\ |\ |\ |\ |\
*make number lines* |\ |\
Polynomial Function - CORRECT ANSWERS ✔✔ex: f(x)= |\ |\ |\ |\ |\ |\ |\
2x^4 + 3x^2 - 10x |\ |\ |\ |\
all powers must be *non negative whole numbers* cannot
|\ |\ |\ |\ |\ |\ |\ |\
have negative powers, square roots, or fractional powers
|\ |\ |\ |\ |\ |\ |\ |\
, the *degree* of the function is the highest power (in this
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
case 4) |\
Rational Function - CORRECT ANSWERS ✔✔ex: f(x)= (x^3
|\ |\ |\ |\ |\ |\ |\
+5x^2 -7) / x+1
|\ |\ |\ |\
It is the QUOTIENT of 2 polynomials
|\ |\ |\ |\ |\ |\
This means NO negative powers, square roots or
|\ |\ |\ |\ |\ |\ |\ |\
fractional powers |\
*does NOT have a degree* |\ |\ |\ |\
Power Function - CORRECT ANSWERS ✔✔ex: f(x)= 2x^5,
|\ |\ |\ |\ |\ |\ |\ |\
3x^-2, square roots, etc |\ |\ |\
Powers can be any real number (including negatives and
|\ |\ |\ |\ |\ |\ |\ |\ |\
fractions)
*does NOT have a degree* |\ |\ |\ |\
All polynomial functions are power functions... - CORRECT
|\ |\ |\ |\ |\ |\ |\
ANSWERS ✔✔but the reverse is not true! Not all power
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
functions are polynomial functions |\ |\ |\