100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting AWV 2 tentamen

Beoordeling
-
Verkocht
-
Pagina's
18
Geüpload op
15-01-2026
Geschreven in
2024/2025

Samenvatting van alle colleges van het tentamen van AWV in jaar 2 (Geneeskunde Leiden)











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
15 januari 2026
Aantal pagina's
18
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Lecture 1 - Research questions

●​ Classification of medical research
○​ Etiology (risk factor)
○​ Diagnosis
○​ Treatment
○​ Prognosis
●​ Research question components → PICO
○​ Patient (population)
○​ Intervention
○​ Comparator
○​ Outcome

Lecture 2 - Randomized controlled trial

Outcomes

●​ Regression to the mean
○​ If the value is at its highest point it can only go down
●​ Outcome model
○​ Treatment (T)
○​ Natural course (NC)
■​ Regression to the mean
○​ Extraneous factors (EF)
■​ Other treatments
■​ Going to the gym
■​ Stop smoking
○​ Error Processes (V)
■​ Natural variation in the medical device used
●​ Possible outcomes
○​ Outcome with treatment
■​ T + NC + EF + V
○​ Outcome without treatment
■​ NC + EF + V
●​ Comparison
○​ Compare 2 (or more) groups
○​ Groups should be compara ble with respect to NC, EF, V
○​ Differ only with respect to treatment

Design elements

●​ Randomisation
○​ Randomly allocation of treatment
○​ Concealment of treatment allocation
■​ Physician doesn’t know which treatment he’s describing
■​ Result → treatment allocation independent of patient characteristics
●​ Blinding

, ○​ Participants don’t know which treatment they receive
■​ Aims to keep the groups comparable during follow-up
■​ This also applies to physicians, nurses, relatives, etc.
○​ Placebo
■​ Tablet which tastes/looks/smells like the active treatment, but does not
contain the active compound
■​ Sometimes difficult → surgery, physiotherapy
○​ Active comparator
■​ Compare different types of drugs
○​ Blinded outcome assessment
■​ The one who ‘measures’ the outcome should not know about
treatment status
●​ Standardisation
○​ Standardisation of intervention, concomitant care & outcome assessment
■​ Minimize error processes
■​ Improve interpretability of treatment effect

Comparability

●​ Start of treatment
○​ Randomisation
○​ Concealment of allocation
●​ Follow-up
○​ Blinding of patient & physicians
●​ Outcome assessment
○​ Blinding of outcome assessor

Equipoise → The genuine uncertainty about which treatment is better

●​ Ethics
○​ Is it ethical to give a placebo when a treatment which is known to be effective
is also available?
○​ Is it ethical to give a new treatment which is known to be uneffective?
●​ Relevant comparison
○​ What is the clinical decision:
■​ Researched drug vs. no treatment
■​ Researched drug vs. other drug

Primary analysis

●​ Intention-to-treat
○​ Purpose → include all participants in the groups to which they were originally
assigned, regardless of whether they completed the trial
●​ Per-protocol
○​ Purpose → only analyze the participants who completed the study as per
protocol

Lecture 3 - Sample size calculations

, Why?

●​ Aim → comparing two treatments
○​ Patients are recruited to the study, and randomized to treatment A or B
●​ How many patients needed?
○​ Too few → not able to detect differences
○​ Too many → high costs & non-ethical

Deciding sample size

●​ Practical
○​ Number of eligible patients treated at a center
○​ Number of patients willing to participate
○​ Time & money
●​ Statistical
○​ How big of an effect can be detected with a given number of patients?

Hypothesis testing

1.​ Decide on a null hypothesis (H0) about the population
○​ Example → there is no difference between the two groups
2.​ Take a representative sample of the population
3.​ Calculate the observed difference in the sample
4.​ Calculate the p-value: the probability to observe at least this difference if H0 is true
5.​ If p-value is smaller than a prespecified value α we reject H0
○​ Value α is called the significance level

Type I & II errors

●​ Type I → false positive
○​ Rejecting a true null hypothesis
○​ Controlled by the significance level (α)
○​ Example: concluding a new drug works when it actually doesn’t
●​ Type II → false negative
○​ Failing to reject a false null hypothesis
○​ Controlled by ß
○​ Concluding a drug doesn’t work when it actually does
●​ Statistical power
○​ 1 - probability of a type II error = 1 - ß

Power → The probability of finding a significant effect in your sample when the effect is
really present in the population

●​ Depends on:
○​ Relevant difference (effect size)
○​ Sample size
○​ Variance / standard deviation (more variation = smaller power)
○​ Significance level α
●​ Goal
€5,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
rosahannahelisadevos

Maak kennis met de verkoper

Seller avatar
rosahannahelisadevos Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
Nieuw op Stuvia
Lid sinds
1 dag
Aantal volgers
0
Documenten
3
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen