100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

MTH 123 - College Algebra and Trigonometry Final Exam 2026/2027 | Complete Questions & Verified Answers | College-Level Precalculus Assessment

Beoordeling
-
Verkocht
-
Pagina's
50
Cijfer
A+
Geüpload op
13-01-2026
Geschreven in
2025/2026

This document provides comprehensive preparation for the MTH 123 College Algebra and Trigonometry Comprehensive Final Examination, featuring complete questions with verified answers for the 2026/2027 academic cycle. It covers algebraic functions and their graphs (polynomial, rational, exponential, logarithmic), trigonometric functions and identities, analytic trigonometry, systems of equations and matrices, conic sections, complex numbers, sequences and series, and mathematical applications and modeling according to current college mathematics curriculum standards and precalculus course requirements. This essential tool offers authentic final exam simulation and systematic content review to ensure mastery of college algebra and trigonometry principles and success on your precalculus assessment.

Meer zien Lees minder
Instelling
MTH 123
Vak
MTH 123











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
MTH 123
Vak
MTH 123

Documentinformatie

Geüpload op
13 januari 2026
Aantal pagina's
50
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

MTH 123 - College Algebra and Trigonometry Final
Exam (2026/2027) | QUESTIONS AND ANSWERS
MTH 123: College Algebra and Trigonometry Comprehensive Examination | Core Domains:
Algebraic Functions & Their Graphs (Polynomial, Rational, Exponential, Logarithmic),
Trigonometric Functions & Identities, Analytic Trigonometry, Systems of Equations &
Matrices, Conic Sections, Complex Numbers, Sequences & Series, and Applications & Modeling
| College-Level Precalculus Focus | Comprehensive Course Final Exam Format


Exam Structure

The MTH 123 College Algebra and Trigonometry Final Exam for the 2026/2027 academic cycle
is a 90-question, multiple-choice question (MCQ) and free-response problem-solving
examination.

Introduction​
This MTH 123 College Algebra and Trigonometry Final Exam guide for the 2026/2027 cycle
assesses mastery of advanced algebraic and trigonometric concepts essential for calculus and
STEM fields. The content emphasizes function analysis, equation solving, graphical
interpretation, and the application of trigonometric identities and laws to solve real-world
problems.

Answer Format​
All correct answers and mathematical solutions must be presented in bold and green,
followed by step-by-step rationales that demonstrate algebraic manipulation, function
transformations, application of trigonometric identities (e.g., Pythagorean, sum/difference), and
clear graphical or analytical reasoning.


Question 1: Solve for \( x \): \( \log_2(x) + \log_2(x - 2) = 3 \).



(A) \( x = 4 \)



(B) \( x = -2 \)



(C) \( x = 2 \)



(D) \( x = 1 \)



(E) No real solution

,Correct Answer: (A) \( x = 4 \)


Rationale: Use the product rule for logarithms: \( \log_b(M) + \log_b(N) = \log_b(MN) \).
So, \( \log_2[x(x - 2)] = 3 \Rightarrow \log_2(x^2 - 2x) = 3 \). Convert to exponential form: \(
x^2 - 2x = 2^3 = 8 \). Rearrange: \( x^2 - 2x - 8 = 0 \). Factor: \( (x - 4)(x + 2) = 0 \). Solutions:
\( x = 4 \) or \( x = -2 \). Check domain: arguments of logs must be positive. For \( x = -2 \), \(
\log_2(-2) \) undefined. For \( x = 4 \), \( \log_2(4) + \log_2(2) = 2 + 1 = 3 \). Valid. Thus, only
\( x = 4 \) is acceptable.

Question 2: Find the exact value of \( \sin\left(\frac{5\pi}{12}\right) \).



(A) \( \frac{\sqrt{6} + \sqrt{2}}{4} \)



(B) \( \frac{\sqrt{6} - \sqrt{2}}{4} \)



(C) \( \frac{\sqrt{3}}{2} \)



(D) \( \frac{1}{2} \)



(E) \( \frac{\sqrt{2}}{2} \)


Correct Answer: (A) \( \frac{\sqrt{6} + \sqrt{2}}{4} \)


Rationale: Note that \( \frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6} \). Use the sine sum
identity: \( \sin(A + B) = \sin A \cos B + \cos A \sin B \). So, \( \sin\left(\frac{\pi}{4} +
\frac{\pi}{6}\right) = \sin\frac{\pi}{4}\cos\frac{\pi}{6} + \cos\frac{\pi}{4}\sin\frac{\pi}{6}
\). Substitute known values: \( = \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) +
\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}
= \frac{\sqrt{6} + \sqrt{2}}{4} \).

Question 3: What is the horizontal asymptote of the rational function \( f(x) = \frac{3x^2 - 2x
+ 1}{x^2 + 4} \)?



(A) \( y = 0 \)



(B) \( y = 3 \)

,(C) \( y = -2 \)



(D) \( y = \frac{1}{4} \)



(E) No horizontal asymptote


Correct Answer: (B) \( y = 3 \)


Rationale: For a rational function \( \frac{P(x)}{Q(x)} \), if degrees of numerator and
denominator are equal, the horizontal asymptote is the ratio of leading coefficients. Here, both
numerator and denominator are degree 2. Leading coefficient of numerator is 3, denominator is
1. So, horizontal asymptote is \( y = \frac{3}{1} = 3 \).

Question 4: Solve the system:

\( x + y + z = 6 \)

\( 2x - y + z = 3 \)

\( x + 2y - z = 2 \)



(A) \( (1, 2, 3) \)



(B) \( (2, 1, 3) \)



(C) \( (3, 2, 1) \)



(D) \( (1, 3, 2) \)



(E) No solution


Correct Answer: (A) \( (1, 2, 3) \)

, Rationale: Use elimination. Add equations (1) and (3): \( (x + y + z) + (x + 2y - z) = 6 + 2
\Rightarrow 2x + 3y = 8 \) → Eq (4). Add equations (2) and (3): \( (2x - y + z) + (x + 2y - z) = 3
+ 2 \Rightarrow 3x + y = 5 \) → Eq (5). Now solve (4) and (5): From (5), \( y = 5 - 3x \).
Substitute into (4): \( 2x + 3(5 - 3x) = 8 \Rightarrow 2x + 15 - 9x = 8 \Rightarrow -7x = -7
\Rightarrow x = 1 \). Then \( y = 5 - 3(1) = 2 \). Plug into (1): \( 1 + 2 + z = 6 \Rightarrow z = 3
\). Solution: \( (1, 2, 3) \). Verify in all equations—valid.

Question 5: Write the complex number \( z = 1 - i \) in polar form.



(A) \( \sqrt{2} \left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) \)



(B) \( \sqrt{2} \left( \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4} \right) \)



(C) \( 2 \left( \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} \right) \)



(D) \( \sqrt{2} \left( \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right) \)



(E) \( 1 \left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right) \)


Correct Answer: (B) \( \sqrt{2} \left( \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}
\right) \)


Rationale: For \( z = a + bi = 1 - i \), modulus \( r = \sqrt{a^2 + b^2} = \sqrt{1^2 + (-1)^2} =
\sqrt{2} \). Argument \( \theta \): point is in quadrant IV. \( \tan\theta = \frac{-1}{1} = -1 \), so
reference angle is \( \frac{\pi}{4} \), thus \( \theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4} \).
Polar form: \( z = r(\cos\theta + i\sin\theta) = \sqrt{2} \left( \cos\frac{7\pi}{4} +
i\sin\frac{7\pi}{4} \right) \).

Question 6: Find the vertex of the parabola \( y = -2x^2 + 8x - 5 \).



(A) \( (2, 3) \)



(B) \( (-2, -29) \)



(C) \( (0, -5) \)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
BestSellerStuvia Chamberlain College Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3545
Lid sinds
5 jaar
Aantal volgers
2045
Documenten
4560
Laatst verkocht
3 uur geleden
BestSellerStuvia

Welcome to BESTSELLERSTUVIA, your ultimate destination for high-quality, verified study materials trusted by students, educators, and professionals across the globe. We specialize in providing A+ graded exam files, practice questions, complete study guides, and certification prep tailored to a wide range of academic and professional fields. Whether you're preparing for nursing licensure (NCLEX, ATI, HESI, ANCC, AANP), healthcare certifications (ACLS, BLS, PALS, PMHNP, AGNP), standardized tests (TEAS, HESI, PAX, NLN), or university-specific exams (WGU, Portage Learning, Georgia Tech, and more), our documents are 100% correct, up-to-date for 2025/2026, and reviewed for accuracy. What makes BESTSELLERSTUVIA stand out: ✅ Verified Questions & Correct Answers

Lees meer Lees minder
3,6

464 beoordelingen

5
193
4
81
3
92
2
20
1
78

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen