100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

2025 OCR A Level Further Mathematics B (MEI) Y420/01 Core Pure Verified Question Paper with Full Mark Scheme

Beoordeling
-
Verkocht
-
Pagina's
52
Cijfer
A+
Geüpload op
05-01-2026
Geschreven in
2025/2026

Download the verified 2025 OCR A Level Further Mathematics B (MEI) Y420/01 Core Pure question paper with the official marking scheme attached. Ideal for A Level revision, exam practice, and teacher use. PDF format.

Instelling
OCR
Vak
OCR











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
OCR
Vak
OCR

Documentinformatie

Geüpload op
5 januari 2026
Aantal pagina's
52
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

2025 OCR A Level Further Mathematics B (MEI)
Y420/01 Core Pure
Verified Question paper with Marking Scheme Attached



Oxford Cambridge and RSA


Thursday 22 May 2025 – Afternoon A
Level Further Mathematics B (MEI) Y420/01 Core
Pure
Time allowed: 2 hours 40 minutes


You must have:
• the Printed Answer Booklet
• the Formulae Booklet for Further Mathematics B


QP
(MEI)
• a scientific or graphical calculator




INSTRUCTIONS
• Use black ink. You can use an HB pencil, but only for graphs and diagrams.
• Write your answer to each question in the space provided in the Printed Answer Booklet. If
you need extra space use the lined pages at the end of the Printed Answer Booklet. The
question numbers must be clearly shown.
• Fill in the boxes on the front of the Printed Answer Booklet.
• Answer all the questions.
• Where appropriate, your answer should be supported with working. Marks might be given
for using a correct method, even if your answer is wrong.
• Give your final answers to a degree of accuracy that is appropriate to the context.
• Do not send this Question Paper for marking. Keep it in the centre or recycle it.

INFORMATION
• The total mark for this paper is 144.
• The marks for each question are shown in brackets [ ].
• This document has 12 pages.

ADVICE
• Read each question carefully before you start your answer.




© OCR 2025 [Y/508/5592] OCR is an exempt Charity
DC (DE/SW) 355352/5 Turn over

, 2

Section A (33 marks)


1 The complex number z satisfies the equation z + 2iz* +1 - 4i = 0 .

You are given that z = x +iy, where x and y are real numbers.

Determine the values of x and y. [4]




2 In this question you must show detailed reasoning.

Find the acute angle between the planes 2x - y + 2z = 5 and x + 2y + z = 8. [4]




3 Using standard summation formulae, show that, for integers n H
1
1, 1 # 3 + 2 # 4 + ... + n # (n + 2) = 6 n (n + 1)(an + b),

where a and b are integers to be determined. [5]




4 (a) You are given that M and N are non-singular 2 # 2 matrices.

Write down the product rule for the inverse matrices of M, N and MN. [1]

(b) Verify this rule for the matrices M and N, where
J a 1NO J0 -1NO
M = KK O and N = KK and a and b are non-zero constants. [6]
0 1 1 bO
L P L P



5 The cubic equation 2x3 - 3x + 4 = 0 has roots a, b and c.
Determine a cubic equation with integer coefficients whose roots are 1 (a + 1), 1 (b + 1) and 1 (c + 1) .
2 2 2
[4]




© OCR 2025 Y420/01 Jun25

, 3

6 The figure below shows the curve with cartesian equation (x2 + y2) 2 = xy.

y




O x




(a) Show that the polar equation of the curve is r2 = a sin bi, where a and b are positive
constants to be determined. [3]

(b) Determine the exact maximum value of r. [2]

(c) Determine the area enclosed by one of the loops. [4]




© OCR 2025 Y420/01 Jun25 Turn over

, 4
Section B (111 marks)


7 In this question you must show detailed reasoning.
3
By first expressing
that
1
in partial fractions, show y 1
dx =
1
ln n , where m and n

x2 - 4 3 x2 - 4 m
are integers to be determined. [8]




8 The function f (x) is defined as f (x) = ln(1 + x), for x 2-1.

(a) Prove by mathematical induction that the nth derivative of f(x), f (n)(x), for all n H 1, is given
(-1) n+1 (n - 1)!
by f (n)(x) = . [4]
(1 + x) n

x 2 x3 (-1) n+1xn
(b) Hence prove that ln(1 + x) = x - 2 + 3 - ... + + ... for -1 1 x G 1.
n
[You are not required to show this series for ln(1 + x) converges for -1 1 x G 1.] [3]




© OCR 2025 Y420/01 Jun25
€7,45
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
OCRSOLUTIONS
5,0
(2)

Maak kennis met de verkoper

Seller avatar
OCRSOLUTIONS Private
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
8 maanden
Aantal volgers
0
Documenten
63
Laatst verkocht
20 uur geleden

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen