100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

College aantekeningen Econometrics II (E_EOR2_TR2) Week 1-3

Beoordeling
-
Verkocht
8
Pagina's
12
Geüpload op
25-02-2021
Geschreven in
2020/2021

Lecture notes of week 1-3, limited dependent variables, of the Econometrics 2 course.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
25 februari 2021
Aantal pagina's
12
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
L.f. hoogerheide
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Econometrics II
Tim Eijkenaar
February 2021




1

, 1 Limited dependent variables
We have already seen the linear regression model in previous courses:

yi = β0 + β1 x1i + β2 x2i + . . . + βk xki + ui .

In many models we unfortunately have to deal with a limited dependent variable (that is, a limited
yi ). In this section we will have a close look at this.

1.1 Binary dependent variables
Suppose we have the binary variable yi with yi = 1 if the salary of person i is above average and
yi = 0 if not. Of each person i we also know his or her number of years of education and we are
interested in the relationship between the number of year of education and salary. Based on our
knowledge of previous courses we would construct the following model

yi = β0 + β1 x1i + ui ,

but this is a very bad idea. A much better idea is to use the probability model which we will soon
construct. But first, let us rewrite the model to

yi = x0i β + ui

with β = [β0 β1 ]T and x0i = [1 x1i ]. For this model, we have (by strict exogeneity)

E(yi | xi ) = E(x0i β + ui | xi ) = E(x0i β | xi ) + E(ui | xi ) = x0i E(β | xi ) + 0 = x0i β

but also (by the definition of the expected value)
X
E(yi | xi ) = yi p(yi | xi ) = 0 · P(yi = 0 | xi ) + 1 · P(yi = 1 | xi ) = P(yi = 1 | xi )
yi ∈{0, 1}

hence
P(yi = 1 | xi ) = x0i β.
Note that the probability will always be in the [0, 1]-interval. Therefore, we know that x0i β ∈ [0, 1].
However, x0i β can be estimated outside this interval. For example, it could be that we obtain
x0i β̂ = −0.1 by least squares which is not in the [0, 1]-interval and therefore we know that this is
a very bad estimate. How do we solve this? We are going to assume that P(yi = 1 | xi ) = G(x0i β)
rather than P(yi = 1 | xi ) = x0i β where G(z) is strictly increasing with 0 ≤ G(z) ≤ 1 for each
z ∈ (−∞, +∞). It should be no surprise that the class of cumulative distribution functions satisfies
these properties. Two common used choices are the following cumulative distribution functions
Z z
1 ez 1 v2
G(z) = −z
= z
and G(z) = Φ(z) = φ(v)dv (with φ(v) = (2π)− 2 e− 2 ).
1+e 1+e −∞

These are the cumulative distribution functions of the logistic distribution and the standard normal
distribution, respectively. We refer to the model as ’probit model’ if the CDF of the standard normal



2
Gratis
Krijg toegang tot het volledige document:
Downloaden

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tei2308
5,0
(1)

Maak kennis met de verkoper

Seller avatar
tei2308 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
108
Lid sinds
5 jaar
Aantal volgers
76
Documenten
3
Laatst verkocht
1 maand geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen